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ABSTRACT

Minimally Invasive Surgery (MIS) offers significant benefits over open surgery,
including reduced postoperative pain, faster recovery, less scarring, and quicker heal-
ing. However, it poses challenges for surgeons due to indirect vision via endoscopic
monitors, necessitating enhanced visual perception and precise instrument control.

This study addresses these challenges by optimizing YOLOv8 and YOLOv11 mod-
els, along with variants incorporating GhostConvolutions, Depthwise Convolution
(DWConv), Mish, and GELU activation functions, for robust surgical tool instance
segmentation. Leveraging the M2CAI16-Tool dataset, we employ a structured exper-
imental approach to balance accuracy and computational efficiency.

Key findings reveal YOLOv11-DWConv as an efficient variant, achieving a 26%
parameter reduction (7.4M) while retaining competitive detection mAP@0.5 (0.906),
suitable for resource-constrained settings. Conversely, YOLOv11-GELU excels with
superior detection accuracy (mAP@0.5: 0.910), highlighting GELU’s enhanced lo-
calization capabilities. Real-time inference speeds (81 FPS for video, 75 FPS for live
feeds) confirm practical applicability for intraoperative guidance.

Instance segmentation results facilitate objective skill assessment through instru-
ment usage patterns, revealing procedural efficiency variations. This underscores the
technology’s potential for surgical evaluation.

Despite these advances, limitations persist, including trade-offs between accuracy
and efficiency, robustness to endoscopic imaging challenges, and dataset constraints.
Future directions involve exploring advanced compression techniques, adaptive pre-
processing, expanded multi-institutional datasets, and integrating Transformer archi-
tectures and Self-Supervised Learning.

This research advances AI-driven surgical instrument detection and segmentation,
offering optimized models that enhance safety, efficiency, and objective assessment
in minimally invasive procedures, paving the way for improved surgical workflows.
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Chapter 1

Introduction

1.1 Background and Motivation

Background

In recent decades, Minimally Invasive Surgery (MIS) has emerged as one of the
most significant advancements in modern surgical practices, marking a major break-
through compared to traditional surgical methods. The work of Philipp Bozzini in
1806, which led to the development of a device called the Lichtleiter for observing in-
ternal cavities of the human body, is considered the foundation of modern endoscopy
and an early precursor to MIS [1]. With the aid of endoscopic instruments, MIS
enables surgeons to perform procedures through small incisions rather than large sur-
gical openings as in conventional open surgery. This approach offers several notable
advantages, such as reduced postoperative pain, lower risk of infection, shorter hos-
pital stays, and accelerated patient recovery. In 1985, Erich Mühe performed the first
laparoscopic cholecystectomy, paving the way for the subsequent development and
widespread adoption of laparoscopic surgery [2].

However, MIS also presents considerable challenges for surgeons. Performing pro-
cedures through small ports restricts the maneuverability of surgical instruments, re-
quiring a high level of dexterity and control. Additionally, since MIS relies on images
transmitted from an endoscopic camera, the surgeon’s field of view is limited, making
it more difficult to accurately identify surgical instruments and surrounding tissues.
These limitations can affect surgical precision, particularly in procedures that demand
a high degree of accuracy, such as neurosurgery, cardiovascular surgery, and abdomi-
nal surgery.

Motivation

One of the most critical aspects of supporting surgeons in laparoscopic procedures
is the ability to accurately recognize and segment surgical instruments in real
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Figure 1.1: Minimally Invasive Surgery

time. The precise identification of instrument location, shape, and movement not
only facilitates navigation but also plays a crucial role in Computer-Assisted Surgery

[3] and robotic-assisted surgery. The recognition and segmentation of surgical instru-
ments have significant potential applications that enhance both surgical precision
and patient safety. These systems can highlight instruments on the screen, allowing
for easier tracking and reducing the risk of confusion, while also playing a crucial
role in preventing surgical errors by providing alerts in cases of misplaced or retained
instruments, a serious risk that can lead to severe complications. Furthermore, in
robotic-assisted surgery, accurate instrument recognition enables surgical robots to
identify tools and surrounding tissues with greater precision, improving the accu-
racy of surgical maneuvers. Beyond real-time applications, these technologies also
enhance medical training by offering more realistic and accurate simulated environ-
ments for surgical residents to learn and practice. Given these benefits, the develop-
ment of advanced artificial intelligence (AI) models capable of reliably recognizing
and segmenting surgical instruments has become an urgent necessity, paving the way
for improved accuracy and efficiency in laparoscopic and minimally invasive proce-
dures.

With the rapid advancements in AI and deep learning, the field of medical image
analysis has achieved significant breakthroughs. Deep learning models, particularly
Convolutional Neural Networks (CNNs), have demonstrated outstanding performance
in medical image processing, ranging from pathological tissue segmentation to lesion
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classification and anatomical structure recognition. In the context of laparoscopic
surgery, deep learning models can be employed to segment surgical instruments in
images and videos captured from endoscopic cameras. Several state-of-the-art mod-
els, such as U-Net [4], DeepLabV3+ [5], Mask R-CNN [6], and YOLO [7], have been
explored and applied to this task. However, due to the unique characteristics of endo-
scopic images, the segmentation of surgical instruments remains a challenging prob-

lem that requires further research and improvement.

1.2 Problem Statement
In Minimally Invasive Surgery (MIS), the core challenge addressed in this the-

sis is to accurately detect and segment surgical instruments in real-time endoscopic
images. Given input as endoscopic video frames, the desired output is the precise
position, type, and segmentation mask of instruments (e.g., Bipolar, Scissors) amidst
complex conditions—variable lighting, occlusions, and tissue noise [8]. This is crit-
ical for Computer-Assisted Surgery (CAS) and robotic-assisted surgery, where preci-
sion and safety hinge on reliable, real-time tracking with latency below milliseconds
to ensure seamless integration into surgical workflows [9]. Current deep learning
methods struggle with accuracy, speed, and adaptability, necessitating a robust solu-
tion.

This problem’s resolution enhances surgical precision by delivering real-time in-
strument data—position and type—for navigation and robotic automation, reducing
errors and improving patient outcomes. It enables intelligent CAS systems to optimize
workflows using artificial intelligence, advancing surgical technology.

Moreover, this thesis leverages detection and segmentation outputs to evaluate sur-
geons’ skills by analyzing instrument usage patterns, such as frequency of use, dura-
tion per tool, and movement efficiency (e.g., trajectory smoothness). These metrics
provide objective insights into dexterity and precision, enabling personalized training,
enhancing simulators, and standardizing surgical quality. Thus, this research tackles
real-time instrument recognition while transforming skill assessment and surgical ed-
ucation.

1.3 Objectives and Scope
This study aims to develop an advanced method for recognizing and segmenting

surgical instruments in Minimally Invasive Surgery (MIS) by enhancing the YOLO

(You Only Look Once) model, renowned for its high speed and accuracy in object
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detection. Applying YOLO to surgical environments is challenging due to variable
lighting, occlusions, overlapping instruments, and tissue noise. To address these is-
sues, the research focuses on three key objectives.

The first objective is to apply the YOLO architecture to accurately detect the po-
sition and type of surgical instruments in endoscopic images. This involves creating
a well-annotated dataset, optimizing data preparation, and using preprocessing tech-
niques to improve model performance under complex surgical conditions.

The second objective is to enhance the YOLO model for endoscopic surgery by
modifying its architecture to boost recognition accuracy while maintaining computa-
tional efficiency. This includes reducing model parameters, applying data augmen-
tation to handle real-world variations, and fine-tuning on a specialized endoscopic
dataset to enhance generalization across diverse surgical scenarios.

The third objective is to evaluate the enhanced YOLO model using standard met-
rics, such as mean Average Precision (mAP), precision, recall, and Frames Per Second

(FPS), to ensure its effectiveness and reliability in real-time surgical applications.
The study will develop and test the YOLO-based model on a dataset of endo-

scopic images featuring seven instrument types: Bipolar, Clipper, Hook, Irrigator,
Scissors, Specimen Bag, and Grasper. The dataset will be preprocessed, including
labeling, normalization, and splitting into training, validation, and test sets, to align
with YOLO’s requirements. Enhancements to the model, such as integrating Ghost

modules [10] and Depthwise Convolution (DWConv) [11], will improve detection ac-
curacy and reduce computational costs, making it suitable for resource-constrained
surgical settings.

The scope of this research centers on optimizing YOLO for surgical instrument
recognition in MIS to improve detection accuracy, speed, and generalization. Beyond
real-time surgical assistance, this work supports robotic-assisted surgery, surgical au-
tomation, and medical training by providing objective metrics on instrument move-
ment and positioning. These metrics enable the evaluation of surgeons’ technical
skills, such as dexterity and precision, facilitating personalized training, enhancing
surgical simulators, and standardizing surgical quality, thus advancing surgical profi-
ciency and patient outcomes.

1.4 Contributions
The recognition and segmentation of surgical instruments in endoscopic images

is a critical challenge in Minimally Invasive Surgery (MIS), impacting Computer-

Assisted Surgery (CAS) and robotic-assisted surgery. This study advances this field
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by enhancing the YOLOv8 and YOLOv11 models to improve the accuracy and effi-
ciency of surgical instrument detection and segmentation in real-world conditions.
The primary contributions are:

(1) Enhancing YOLO Models. This study fine-tunes YOLOv8 and YOLOv11 on
a dataset of endoscopic images with seven instrument types—Bipolar, Clipper,
Hook, Irrigator, Scissors, Specimen Bag, and Grasper—using preprocessing and
data augmentation to improve detection accuracy under complex conditions. A
comparative analysis of the models, based on accuracy, speed, and robustness,
identifies the optimal model for surgical applications, enhancing procedural ac-
curacy and patient safety.

(2) Performance Optimization. This study integrates Depthwise Convolution (DW-

Conv) [11] and Ghost Convolution [10] into the YOLO architecture to reduce
computational costs while maintaining accuracy. A comparative analysis, using
metrics like Frames Per Second (FPS), determines the best approach for surgical
applications, balancing efficiency and complexity.

(3) Improving Non-Linearity. This study investigates Mish [12] and GELU [13]
activation functions to enhance YOLO models’ learning capabilities. A compar-
ative analysis of convergence speed, gradient stability, and accuracy identifies
the optimal function, improving model robustness in medical image analysis.

(4) Evaluating Surgical Efficiency. This study uses detection and segmentation
results on the test dataset to evaluate surgical efficiency, analyzing metrics like
instrument movement smoothness and positioning accuracy to assess surgeons’
skills, supporting training programs, simulators, and surgical quality standard-
ization, thus improving proficiency and patient outcomes.

1.5 Thesis Structure
This thesis, spanning six chapters, explores surgical instrument recognition using

the YOLO model. Chapter 1 introduces Minimally Invasive Surgery (MIS), high-
lighting the importance and challenges of instrument recognition, followed by the
research objectives and key contributions. Chapter 2 reviews existing studies on de-
tection and segmentation, focusing on deep learning applications in medical image
analysis and the limitations of current methods. Chapter 3 outlines the methodol-
ogy, covering data collection, preprocessing, network architecture design, and model
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training with evaluation criteria. Chapter 4 presents experimental results, analyz-
ing performance metrics and visualization of detection and segmentation outcomes.
Chapter 5 discusses these findings, addressing research limitations and proposing
future improvements. Chapter 6 concludes by summarizing contributions, empha-
sizing clinical significance, and suggesting potential applications and developments.
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Chapter 2

Literature Review

2.1 Minimally Invasive Surgery
Minimally Invasive Surgery (MIS) is a technique using small incisions, typi-

cally under 2 cm, with specialized instruments and miniature cameras to perform
procedures while minimizing tissue damage. Introduced by Dr. John E. A. Wick-
ham in 1987, MIS reduces postoperative pain, shortens recovery time, and improves
patient outcomes compared to traditional open surgery [14]. Its origins date back to
the 19th-century cystoscope, followed by key advancements like the Veress needle
(1938) for pneumoperitoneum, the Hasson technique (1970) for open laparoscopy,
and the "video-endoscopy" era sparked by solid-state cameras in 1982. A milestone
came in 1981 with Kurt Semm’s first laparoscopic appendectomy, solidifying MIS’s
role in modern surgery [15].

MIS includes techniques like laparoscopic and thoracoscopic surgery, relying on
endoscopes for real-time visualization and precise instrument manipulation through
tiny incisions. Widely applied in fields such as gastrointestinal surgery, urology,
and gynecology, MIS offers reduced pain, faster recovery, lower infection risk, and
minimal scarring, enhancing patient satisfaction and hospital efficiency. However,
challenges include high training and equipment costs, limiting accessibility, and its
unsuitability for some complex cases where open surgery remains preferable.

Advancements like robot-assisted surgery and artificial intelligence-driven sys-
tems are shaping the future of MIS, improving precision and expanding its applica-
tions [16]. These innovations promise safer, more efficient procedures, redefining
surgical care and patient outcomes.

2.2 Surgical Tool Detection and Segmentation
Surgical tool detection and segmentation are pivotal in advancing modern surgery

by identifying the position and shape of instruments, enhancing efficiency and safety.
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These processes support Computer-Assisted Surgery (CAS) and robotic systems by
providing real-time tool tracking for precise navigation and control, reducing risks
during procedures [17]. Beyond intraoperative use, segmentation aids surgical skill
assessment, procedural planning, and workflow analysis through detailed movement
data, improving training and clinical outcomes. It also drives innovations like robotic
surgery and augmented reality (AR), where accurate segmentation enables high-precision
maneuvers and enhanced visualization, shaping the future of medical technology.

Figure 2.1: Laparoscopic surgical instrument segmentation

Before deep learning, segmentation relied on traditional methods like threshold-
ing, edge detection, region-based approaches, and model-based techniques. Thresh-
olding separated tools from backgrounds using intensity but faltered under variable
lighting [18]. Edge detection identified boundaries yet struggled with noise, while
region-based methods depended on feature selection, often failing with similar back-
grounds. Model-based segmentation used predefined shapes but lacked adaptability
to deformations or occlusions [19]. These limitations spurred the shift to deep learn-
ing for more robust solutions.

Challenges in surgical tool segmentation include variability in instrument shape
and size, motion and deformation during surgery, changing lighting conditions, and
occlusions from blood or tissue. Noise from smoke or fluids further degrades im-
age quality, complicating accurate detection [20]. Addressing these issues requires
integrating traditional techniques with advanced deep learning models to improve re-
liability and precision in real-time surgical applications.

2.3 Medical Image Analysis

2.3.1 Deep Learning in Healthcare

The evolution of deep learning has reshaped medical image analysis over recent
years, moving beyond traditional methods that depended on manually crafted fea-
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tures to data-driven approaches offering superior accuracy and adaptability. Studies
have increasingly harnessed Convolutional Neural Networks (CNNs) to tackle essen-
tial tasks, starting with disease classification where architectures like ResNet and
EfficientNet emerged as powerful tools for identifying abnormalities in X-rays and
MRIs [21]. This progress extended to segmentation, with models such as U-Net and
DeepLab refining the delineation of tissues and surgical instruments, a leap forward
from earlier techniques [22]. Research then explored anomaly detection, employ-
ing autoencoders and GANs to uncover irregularities in scans, enhancing diagnostic
precision [23]. These advancements converged in Computer-Aided Diagnosis (CAD)

systems, which have evolved from basic support tools to sophisticated aids for clinical
decision-making, reflecting deep learning’s growing impact across healthcare imag-
ing applications [24].

The literature reveals a broadening scope of deep learning applications, driven by
its ability to learn directly from raw medical images. Initial efforts focused on clas-
sification, where CNNs outperformed traditional methods in detecting pathologies
across diverse modalities like CT and ultrasound [21]. Subsequent studies advanced
segmentation, with models like nnU-Net improving precision in outlining anatomi-
cal structures and pathological regions, critical for surgical planning [22]. Concur-
rently, anomaly detection gained traction, as GAN-based approaches proved effective
in spotting subtle deviations in complex scans, addressing gaps left by earlier methods
[23]. This trajectory culminated in enhanced CAD systems, now integral to clinical
workflows, leveraging deep learning to handle increasingly intricate diagnostic tasks
and improve patient outcomes [24].

Despite these strides, research highlights persistent challenges in applying deep
learning to medical imaging. Early studies struggled with limited labeled datasets, a
barrier due to the expertise and time required for annotation, prompting exploration of
unsupervised and self-supervised learning to lessen reliance on manual labels [25].
Another issue emerged as domain shift, where models trained on specific datasets
faltered on new data due to variations in imaging protocols or patient populations,
leading to the adoption of transfer learning to boost adaptability [26]. Ongoing inves-
tigations continue to address these hurdles, refining deep learning techniques to en-
sure robust, efficient, and widely accessible tools for medical image analysis, poised
to further transform diagnostic practices.
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2.3.2 Common Medical Datasets

The advancement of deep learning in medical image analysis hinges on high-
quality datasets, which provide diverse images and expert annotations essential for
model development. Research has progressively curated datasets to address varied
objectives, from disease diagnosis to surgical tool recognition, shaping the evolu-
tion of data-driven medical imaging. Early efforts focused on X-ray analysis, with
datasets like ChestX-ray14 (112,120 images, 14 diseases) [27] and MIMIC-CXR
(over 370,000 images) [28] enabling pneumonia and lung cancer detection studies.
These paved the way for tuberculosis research using Montgomery and Shenzhen
datasets.

Subsequent studies expanded to MRI and CT imaging, where BraTS [29] emerged
for brain tumor segmentation, offering annotated MRI scans to refine tumor delin-
eation algorithms. Similarly, LIDC-IDRI [30] provided CT scans with nodule anno-
tations for lung cancer detection, while the Medical Segmentation Decathlon (MSD)
[31] broadened the scope with multi-organ MRI and CT data, fostering generalizable
segmentation approaches. In endoscopic surgery, datasets like EndoVis and Cholec80
[32] introduced real-world surgical images and videos, annotated for instrument de-
tection and procedural analysis, supporting intelligent surgical systems.

The literature also highlights datasets in specialized domains. For ultrasound,
BUSI enabled breast cancer detection with 780 annotated images, while histopatho-
logical datasets like Camelyon16/17 and PAIP 2019 advanced metastasis and liver
cancer analysis through annotated pathology images. Despite their foundational role,
these datasets face challenges, including limited size, device variability, and anno-
tation demands, prompting research into multi-dataset integration to enhance model
accuracy and adaptability in clinical applications.

2.4 Instance Segmentation
Instance segmentation, a critical task in computer vision, has evolved as a special-

ized form of image segmentation, dividing images into distinct objects rather than just
regions, unlike semantic segmentation. Research highlights its growing importance
in medical image analysis, particularly in Computer-Assisted Surgery (CAS) and
robotic surgery, where distinguishing individual surgical instruments enhances proce-
dural accuracy and safety. Initial studies focused on basic segmentation, but the need
to identify each tool uniquely in complex surgical scenes spurred the development of
instance segmentation, laying the groundwork for advanced surgical applications.
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2.4.1 Traditional Methods

Early efforts in instance segmentation leaned on classical image processing tech-
niques, adapting methods like thresholding, edge-based, and region-based segmen-
tation for medical imaging. Watershed Segmentation emerged as a key approach,
exploiting intensity differences to define object boundaries [33], yet its sensitivity to
noise and overlap limited reliability in surgical contexts. Concurrently, Graph Cut
and GrabCut techniques modeled images as graphs, separating objects via intensity-
based cuts, though performance waned in scenes with unclear edges. Active Contour
Models followed, using adaptable contours to capture flexible instrument shapes [34],
but struggled with initialization and noise, particularly under occlusions. These tradi-
tional methods, while foundational, proved inadequate for the dynamic challenges of
surgical environments—overlapping tools, variable lighting, and noise—prompting a
shift to deep learning approaches for improved precision and robustness.

2.4.2 Deep Learning-Based Methods

The advent of deep learning has revolutionized image segmentation, with Con-

volutional Neural Networks (CNNs) surpassing traditional methods in accuracy and
robustness, despite higher computational demands. Advances in hardware accelera-
tion have mitigated these costs, enabling real-time applications in medical imaging.
Research has progressed from early CNN-based models to sophisticated architectures
tailored for segmentation, each addressing specific challenges in the field.

U-Net, introduced by Ronneberger et al. (2015) [4], marked a pivotal shift with its
encoder-decoder design and skip connections, preserving spatial details for precise
medical image segmentation. Its contracting path extracts hierarchical features via
convolutions and pooling, while the expanding path restores resolution, making it
ideal for tasks like tumor and instrument delineation. Variants like U-Net++ [35]
enhanced this with dense skip connections for finer multi-scale fusion, and Attention
U-Net [36] added focus on key regions, boosting accuracy in complex scenes. The
3D U-Net [37] extended this to volumetric data, improving segmentation in MRI and
CT scans.

SegNet, proposed by Badrinarayanan et al. (2017) [38], emerged as a lightweight
alternative, optimizing efficiency with stored pooling indices instead of skip connec-
tions. Its encoder captures features, and the decoder reconstructs spatial details using
these indices, prioritizing speed for real-time medical applications, though at some
cost to fine-detail accuracy. DeepLab, evolving through versions from v1 (2015) to
v3+ (2018) by Chen et al. [39], introduced Atrous Convolution and ASPP to capture
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multi-scale context, refining boundaries with an encoder-decoder structure, proving
effective for endoscopic and high-resolution imaging [40].

Mask R-CNN, developed by He et al. (2017) [6], advanced instance segmentation
by extending Faster R-CNN with a mask prediction branch. Leveraging ResNet-FPN
for feature extraction and ROI Align for precise alignment, it excels in distinguish-
ing individual surgical tools, enhancing CAS and robotic surgery applications. These
models collectively illustrate a trajectory of increasing sophistication, addressing ac-
curacy, efficiency, and adaptability in medical segmentation.

2.5 Limitations of Existing Methods
Research on computer vision for surgical tool detection and segmentation has pro-

gressed significantly, yet real-world applications, particularly in endoscopic surgery,
reveal persistent limitations. Early studies established robust frameworks, but chal-
lenges emerged in complex surgical environments. Lighting variations, driven by in-
strument movement and camera angles, disrupt color- and contrast-based algorithms,
reducing detection accuracy. Occlusion from tissues or overlapping tools further ham-
pers edge- and region-based methods, while biological artifacts—blood, smoke, and
soft tissues—obscure instruments, complicating object recognition.

Advanced deep learning models like Mask R-CNN [6] and DeepLabv3+ [40] have
elevated segmentation precision, yet their computational demands hinder real-time
performance critical for surgical safety, where even millisecond delays pose risks.
Additionally, the similarity in instrument shapes and colors, exacerbated by varying
angles and proximity, often leads to misclassification in models such as U-Net and
Mask R-CNN. Recognizing these gaps, recent efforts, including this study, explore
enhanced models to boost accuracy and efficiency, addressing the dual need for pre-
cision and speed in surgical applications.
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Chapter 3

Methodology

3.1 Data Acquisition and Preprocessing
This study employs two endoscopic datasets for laparoscopic cholecystectomy:

the M2CAI16-Tool dataset [41] and the Cholec80 dataset [32]. The M2CAI16-Tool
dataset, sourced from the 2016 M2CAI Tool Presence Detection Challenge, comprises
15 high-resolution laparoscopic surgery videos recorded at the University Hospital of
Strasbourg. Each video captures real operative conditions, annotated for the presence
of seven surgical instruments: Bipolar, Clipper, Hook, Irrigator, Scissors, Specimen
Bag, and Grasper. Complementing this, the Cholec80 dataset includes 80 cholecys-
tectomy videos performed by 13 surgeons, acquired at 25 frames per second, with
annotations detailing tool usage and surgical phases, enhancing its utility for proce-
dural analysis.

Given the absence of bounding box coordinates and segmentation masks in the
M2CAI16-Tool dataset, manual annotation was performed using Roboflow. High-
quality frames (5,249 in total) were extracted from videos 1 to 10, selected to en-
compass diverse surgical scenarios, including variable illumination and instrument
occlusions. Annotations involved defining bounding boxes with normalized center
coordinates (xcenter,ycenter) and dimensions (width,height) in the range [0, 1], along-
side segmentation masks delineated by polygon vertices (x1,y1, . . . ,xn,yn). The anno-
tated data was exported in YOLO format, adhering to the structure below:

[class_id, xcenter,ycenter,width,height,x1,y1,x2,y2, . . . ,xn,yn], (3.1)

where class_id ∈ {0,1, . . . ,6} denotes the instrument type (e.g., Bipolar, Clipper),
(xcenter,ycenter) and (width,height) are normalized bounding box parameters, and (xi,yi)

for i = 1, . . . ,n represent the segmentation mask vertices, all scaled to [0, 1] relative
to frame dimensions.

Data preprocessing ensured compatibility with the YOLO model. Frames were
resized to 640×480 pixels for uniformity and normalized to a [0, 1] intensity scale to
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facilitate training convergence. The annotated frames were partitioned into training
(3,674 frames, 70%), validation (1,050 frames, 20%), and test (525 frames, 10%)
sets, adhering to a 7:2:1 ratio. This division optimizes training coverage, validation
tuning, and generalization assessment. Figure 3.1 illustrates representative annotated
frames from each subset, highlighting instrument diversity and annotation quality.

(a) Training (3,674 images) (b) Validation (1,050 images) (c) Test (525 images)

Figure 3.1: Annotated frames from the M2CAI16-Tool dataset across training,
validation, and test subsets

3.2 YOLO Model
The YOLO (You Only Look Once) model, a Convolutional Neural Network

(CNN)-based framework, has redefined object detection by integrating region pro-
posal and classification into a single-step process, achieving real-time performance
with high accuracy [42]. Unlike traditional two-stage detectors like R-CNN, YOLO’s
unified architecture processes images holistically, offering a significant advancement
over sequential methods. Since its inception by Redmon et al. (2016), YOLO has
evolved through multiple iterations, enhancing its capabilities for object detection,
instance segmentation, and pose estimation, driven by contributions from various re-
search groups.

YOLOv1 [42] introduced the single-stage paradigm, leveraging a streamlined CNN
to achieve unprecedented speed, though with trade-offs in precision compared to
region-based methods. YOLOv2 [43] improved accuracy via Batch Normalization
and anchor boxes, expanding detection to over 9,000 classes. YOLOv3 [44] adopted
Darknet-53 as its backbone, incorporating multi-scale feature maps to enhance de-
tection across object sizes, balancing speed and accuracy. Subsequent developments,
such as YOLOv4 [45], refined the Darknet framework with advanced training strate-
gies, while YOLOv5 [46] optimized scalability and deployment efficiency. YOLOv6
[47] and YOLOv7 [48] further improved computational efficiency, with applications
extending to robotics and high-performance tasks.

Recent iterations have pushed the boundaries of YOLO’s capabilities. YOLOv8
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[49] introduced network optimizations and enhanced training protocols, improving
segmentation and pose estimation. YOLOv9 [50] incorporated Programmable Gradi-
ent Information (PGI) to refine gradient updates, bolstering robustness, while YOLOv10
[51] adopted an NMS-free approach, achieving state-of-the-art performance with re-
duced latency. The latest, YOLOv11 [52], developed by Ultralytics, integrates these
advancements, offering superior accuracy, speed, and versatility across detection, seg-
mentation, and classification tasks. Its customizability and performance make it a
leading model for real-time applications.

This study selects YOLOv8 and YOLOv11 for improvement and evaluation, lever-
aging their stability and precision. YOLOv8 provides a well-validated baseline, while
YOLOv11, the most recent iteration at the time of this research, demonstrates marked
improvements in accuracy and efficiency, as evidenced by recent literature [52]. These
models are particularly suited for high-precision surgical instrument recognition in
endoscopic image analysis, addressing real-time processing demands and robust seg-
mentation in complex surgical environments. Details of the YOLOv8 and YOLOv11
models are presented in detail in the following subsections.

3.2.1 YOLOv8

YOLOv8, an advanced iteration of the YOLO framework, leverages a Convolu-
tional Neural Network (CNN) architecture to achieve state-of-the-art performance
in real-time object detection and segmentation. Central to its design is the adoption
of CSPNet (Cross Stage Partial Network) as the backbone, paired with an FPN+PAN
(Feature Pyramid Network + Path Aggregation Network) neck, optimizing feature ex-
traction and multi-scale aggregation. CSPNet minimizes computational redundancy,
enhancing efficiency, while FPN+PAN ensures robust detection across diverse object
sizes and aspect ratios, critical for complex datasets such as surgical imagery.

A pivotal advancement in YOLOv8 is its shift to an anchor-free detection mech-
anism, departing from the anchor box reliance of predecessors like YOLOv3 and
YOLOv5 [46]. This eliminates the need for extensive hyperparameter tuning, reduc-
ing computational overhead and improving adaptability to varied object morpholo-
gies. The anchor-free approach accelerates training convergence and enhances gener-
alization, yielding superior accuracy on heterogeneous datasets. Additionally, YOLOv8
integrates Focal Loss, defined as:

FL(pt) =−(1− pt)
γ log(pt), (3.2)

where pt is the predicted probability, and γ adjusts focus on difficult samples to miti-
gate class imbalance in object detection, enhancing precision.
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Figure 3.2: Object detection output using YOLOv8

Figure 3.3: Network architecture of YOLOv8

Training efficiency is further augmented through PyTorch-based optimizations and
Mixed Precision Training, leveraging GPU resources to minimize latency and mem-
ory usage without compromising accuracy. YOLOv8 also employs advanced data
augmentation strategies, notably Mosaic and Mixup Augmentation. Mosaic Aug-
mentation combines four images into a single frame with randomized cropping and
scaling, enriching dataset variability and improving robustness to scale and occlusion
variations. Mixup Augmentation blends two images via weighted averaging of pixels
and labels, enhancing the model’s capacity to discern objects in cluttered environ-
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ments, a key advantage for medical imaging applications.
Figures 3.2 and 3.3 illustrate YOLOv8’s detection output and network architecture,

respectively. These enhancements—anchor-free design, optimized loss, and augmen-
tation—elevate YOLOv8’s performance, making it highly efficient and scalable for
real-time vision tasks. As evaluated in this study, its developer-friendly interface, in-
cluding a Python API and CLI, further facilitates deployment, positioning YOLOv8 as
a leading solution for precise surgical instrument recognition in endoscopic analysis.

3.2.2 YOLOv11

YOLOv11, unveiled at the YOLO Vision 2024 Conference, represents the latest
advancement in the YOLO (You Only Look Once) series, enhancing real-time ob-
ject detection within a Convolutional Neural Network (CNN) framework. Build-
ing upon its predecessors, YOLOv11 introduces significant architectural and training
innovations, achieving superior accuracy, efficiency, and scalability across multiple
vision tasks, including object detection, instance segmentation, pose estimation, ori-
ented object detection, and image classification.

Figure 3.4: Network architecture of YOLOv11

The backbone of YOLOv11 replaces the C2f module with C3k2, a refined structure
utilizing a kernel size of 2 to reduce parameter count while preserving robust feature
extraction capabilities. This optimization, depicted in Figure 3.5, enhances computa-
tional efficiency, enabling faster inference without compromising performance, ideal
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Figure 3.5: C3k2 module in YOLOv11

for real-time applications such as surgical tool recognition. The SPPF (Spatial Pyra-
mid Pooling - Fast) module, illustrated in Figure 3.6, is further optimized to aggregate
multi-scale features, improving processing speed and feature quality.

The neck integrates C3k2 and C2PSA (Convolutional Block with Parallel Spatial
Attention), as shown in Figure 3.7, to streamline feature transmission and enhance
multi-layer aggregation. C2PSA improves spatial attention, bolstering detection of
small or occluded objects, while C3k2 ensures efficient multi-scale feature process-
ing, critical for handling diverse object sizes and orientations in endoscopic imagery.
The head employs C3k2 Blocks for high-level feature refinement and CBS Blocks
(Convolution-BatchNorm-SiLU) for stability, with Batch Normalization standardiz-
ing feature distributions and SiLU activation introducing smooth non-linearity, en-
hancing convergence and generalization.

Figure 3.6: SPPF module in YOLOv11
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Figure 3.7: C2PSA module in YOLOv11

YOLOv11 reduces computational demands while maintaining high accuracy, of-
fering scalable variants (Nano to Extra-Large) suitable for deployment across edge de-
vices and high-performance systems. Its architecture, detailed in Figure 3.4, supports
robotics, healthcare, and security applications, with particular efficacy in medical
imaging due to its precision and speed. These advancements position YOLOv11 as
a versatile platform, extending beyond object detection to a comprehensive computer
vision ecosystem.

3.3 Network Components and Activation Functions
This study aims to enhance the performance of YOLOv8 and YOLOv11 by opti-

mizing parameter efficiency and improving evaluation metrics through targeted exper-
imentation with network modules and activation functions. Specifically, we evaluate
the Ghost Module, Depthwise Convolution, Mish, and GELU, recognized for their
ability to refine feature extraction and inference efficiency in Convolutional Neural
Networks (CNNs), critical for real-time object detection in complex datasets.

3.3.1 Ghost Module

Optimizing computational efficiency in CNNs while preserving accuracy remains
a persistent challenge, particularly for real-time applications. Ghost Convolution
(GhostConv), introduced by Han et al. (2020) [10], addresses this by reducing pa-
rameter and computational demands without sacrificing feature extraction efficacy.

19



Premised on the redundancy within standard convolution feature maps, GhostConv
employs a two-stage process: (i) a primary convolution computes a subset of out-
put channels, and (ii) a secondary stage generates additional channels via lightweight
transformations, such as depthwise convolution.

Figure 3.8: Schematic of Ghost Convolution

Figure 3.8 illustrates this mechanism, which achieves equivalent feature map di-
mensionality to standard convolution with substantially fewer operations. For YOLOv8
and YOLOv11, designed for rapid inference, GhostConv reduces computational com-
plexity by approximately 50%, enhancing deployment on resource-constrained edge
devices like NVIDIA Jetson and Qualcomm Snapdragon platforms. This efficiency
gain maintains detection accuracy, making it an effective substitute for traditional
convolution layers in deep architectures.

Beyond resource optimization, GhostConv mitigates overfitting by leveraging a
reduced parameter set to learn diverse features, improving model generalization, par-
ticularly in data-scarce scenarios. This robustness is vital for surgical tool detection,
where variability in imaging conditions prevails. Our evaluation of GhostConv within
YOLOv8 and YOLOv11 seeks to balance performance and computational cost, poten-
tially advancing real-time object detection efficacy in medical imaging applications.

3.3.2 Depthwise Convolution

For lightweight models optimized for mobile devices and embedded systems, Depth-
wise Convolution has become a key technique for minimizing parameter count and
computational costs while preserving effective feature extraction. This method has
been widely adopted in architectures such as MobileNet, EfficientNet, and YOLO
to improve image processing efficiency without significantly compromising accu-
racy. With the continued development of YOLOv8 and YOLOv11, experimenting
with replacing standard convolution layers with Depthwise Convolution could lead to
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faster inference speeds, reduced memory consumption, and improved deployability on
edge devices, all while maintaining high accuracy. Depthwise Convolution is an effi-
cient variation of standard convolution, designed to reduce computational complexity
while preserving essential feature extraction capabilities. Unlike conventional convo-
lution operations, where a single filter is applied across all input channels, Depthwise
Convolution processes each channel independently using a separate filter. This spe-
cialized approach significantly reduces the number of multiplications and additions,
leading to improved computational efficiency without compromising accuracy.

The Depthwise Convolution process consists of two primary steps. In the first
stage, known as the backbone feature extraction step, each input channel undergoes
convolution with a unique filter instead of applying a shared filter across all channels.
This channel-wise processing allows the model to efficiently extract distinct spatial
patterns while significantly lowering the computational cost compared to standard
convolution. By reducing redundant operations, Depthwise Convolution enhances the
model’s ability to process high-dimensional feature maps with minimal latency. Fol-
lowing the Depthwise Convolution step, the extracted feature maps must be combined
and integrated to form a more meaningful representation. This is achieved through
Pointwise Convolution (1×1 Convolution), where a 1×1 filter is applied across the
output channels to learn inter-channel dependencies and reconstruct a complete fea-
ture representation. This step is crucial, as it ensures that spatial information extracted
during Depthwise Convolution is effectively reorganized and refined for subsequent
layers.

By separating spatial and channel-wise computations, Depthwise Convolution not
only enhances computational efficiency but also reduces memory usage, making it an
ideal choice for resource-constrained environments such as mobile devices, embedded
systems, and real-time computer vision applications. Its integration into modern deep
learning architectures, including YOLO models and lightweight CNNs, has proven to
be highly effective in maintaining a balance between speed, accuracy, and efficiency.

The formulas for computing the number of operations in Standard Convolution
and Depthwise Separable Convolution clearly illustrate the computational efficiency
of the latter:

Standard Convolution:

FLOPs = H ×W ×Cin ×Cout ×K2 (3.3)

Depthwise Separable Convolution:
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FLOPs = H ×W × (Cin ×K2 +Cin ×Cout) (3.4)

where H,W are the input dimensions, Cin,Cout are the number of input and output
channels, and K is the kernel size.

Depthwise Convolution is an efficient method for reducing computational costs
while maintaining high object detection performance. Integrating Depthwise Con-
volution can enhance inference speed, deployment efficiency on edge devices, and
hardware resource optimization.

3.3.3 Mish Function

In deep neural networks (DNNs), the choice of activation function critically influ-
ences training dynamics and generalization. Mish, introduced by Misra (2019) [12],
is a smooth, non-monotonic function designed to enhance these properties, defined
as:

Mish(x) = x · tanh(softplus(x)), where softplus(x) = ln(1+ ex). (3.5)

Figure 3.9 illustrates its profile, highlighting its continuous differentiability, unbounded
range, and stable gradient characteristics, which distinguish it from traditional func-
tions like ReLU and SiLU.

Figure 3.9: Profile of the Mish activation function

Mish mitigates the vanishing gradient issue prevalent in deep architectures by en-
suring smooth gradient flow, contrasting with ReLU’s abrupt zeroing of negative in-
puts. This smoothness, evidenced by its first and second derivatives in Figure 3.10,
facilitates efficient optimization and faster convergence. Unlike ReLU, which discards
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negative values, Mish retains them, preserving richer feature representations and en-
hancing expressiveness—an advantage over SiLU’s bounded behavior. This property
proves particularly beneficial in tasks requiring fine-grained feature extraction, such
as medical image analysis, where subtle details are paramount.

Figure 3.10: First and second derivatives of the Mish function

Integration of Mish into YOLOv8 and YOLOv11 enhances detection accuracy
without additional computational cost. Experimental evidence from YOLOv4 demon-
strates a 2–3% increase in mean Average Precision (mAP) when replacing Leaky
ReLU with Mish, a gain attributed to improved gradient stability and feature re-
tention [12]. In YOLOv11, with its complex multi-layer design, Mish’s ability to
maintain positive gradients for negative inputs reduces gradient starvation, optimiz-
ing backpropagation and boosting robustness for small or occluded object detection
in endoscopic imagery. These improvements position Mish as a superior alternative
to conventional activation functions, enhancing precision and training efficiency in
real-time vision applications.

3.3.4 GELU Function

The activation function governs convergence, learning efficiency, and accuracy in
deep neural networks (DNNs). The Gaussian Error Linear Unit (GELU), proposed by
Hendrycks and Gimpel (2016) [13], introduces a smooth, unbounded, and adaptive
non-linear transformation, defined as:

GELU(x) = xΦ(x) = x · 1
2

[
1+ erf

(
x√
2

)]
, (3.6)
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where Φ(x) is the cumulative distribution function of the standard Gaussian, and
erf(x) = 2√

π

∫ x
0 e−t2

dt is the error function.

Approximations include 0.5x
(

1+ tanh
[√

2
π
(x+0.044715x3)

])
and xσ(1.702x),

with σ as the sigmoid function.
Figure 3.11 depicts its profile, showcasing its continuous differentiability.

Figure 3.11: Profile of the GELU activation function

GELU’s adaptive non-linearity, driven by the Gaussian weighting, adjusts dynami-
cally to input magnitude, outperforming ReLU’s fixed thresholding and SiLU’s bounded
output. This adaptability, coupled with its unbounded range, preserves strong feature
representations, avoiding ReLU’s loss of negative inputs. Its smoothness, illustrated
by the first and second derivatives in Figure 3.12, enhances gradient flow compared to
ReLU and Swish, mitigating vanishing gradient issues and accelerating convergence
in deep architectures, notably Transformers and CNNs.

Figure 3.12: First and second derivatives of the GELU function

In YOLOv8 and YOLOv11, integrating GELU into the backbone, neck, and head
enhances object detection precision, particularly for small or occluded objects in en-
doscopic imagery. Experimental evidence from Transformer models like BERT and
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ViT demonstrates GELU’s superior accuracy over ReLU on large-scale datasets such
as ImageNet [13], a benefit attributed to its nuanced feature retention. In YOLO con-
texts, GELU improves mean Average Precision (mAP) by leveraging adaptive non-
linearity, outperforming SiLU in fewer epochs, thus optimizing training efficiency
without added computational cost. This positions GELU as a compelling alternative
for real-time detection tasks requiring high accuracy and robustness.

3.4 Proposed Model Architectures
This study proposes enhancements to the YOLOv8 and YOLOv11 frameworks by

integrating optimized modules and activation functions to reduce parameter count
while improving detection accuracy and inference efficiency in real-time applica-
tions. Three distinct architectural modifications are evaluated: YOLO-Ghost, YOLO-
Depthwise Convolution, and YOLO-Mish/GELU, each targeting specific components
of the original models to address computational complexity and performance trade-
offs.

3.4.1 YOLO-Ghost Model

Figure 3.13: YOLOv8 with GhostConv backbone
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Figure 3.14: YOLOv11 with GhostConv backbone

To enhance computational efficiency in YOLOv8 and YOLOv11, we incorporate
the Ghost Module through two experimental configurations. In the first trial, the
backbone’s Conv modules are substituted with GhostConv modules, reducing pa-
rameter redundancy while preserving feature extraction efficacy, yielding YOLOv8-
GhostConv and YOLOv11-GhostConv, as depicted in Figures 3.13 and 3.14, respec-
tively.

Figure 3.15: Structure of the C3Ghost module
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Figure 3.16: YOLOv8 with C3Ghost backbone

Figure 3.17: YOLOv11 with C3Ghost backbone

In the second trial, we extend this modification by replacing both Conv modules
with GhostConv and C3K2 modules with C3Ghost modules, resulting in YOLOv8-
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C3Ghost and YOLOv11-C3Ghost, shown in Figures 3.16 and 3.17. The C3Ghost
module, illustrated in Figure 3.15, integrates a Depthwise (DW) convolution be-
tween two GhostConv layers, augmented by a shortcut pathway (DWConv followed
by Conv2D), substantially reducing parameters while enhancing feature richness via
skip connections. These backbone-focused modifications retain the original neck and
head structures to preserve core YOLO characteristics, optimizing inference speed for
resource-constrained environments.

3.4.2 YOLO-Depthwise Convolution

The YOLO-Depthwise Convolution model modifies the backbone of YOLOv8 and
YOLOv11 by replacing Conv modules with Depthwise Convolution (DWConv), sig-
nificantly reducing parameter count and computational load. This substitution yields
YOLOv8-DWConv and YOLOv11-DWConv, depicted in Figures 3.18 and 3.19, re-
spectively. DWConv’s channel-wise processing minimizes operations compared to
standard convolution, enhancing inference efficiency while maintaining detection per-
formance, making it suitable for real-time surgical tool recognition where computa-
tional resources are limited.

Figure 3.18: YOLOv8 with DWConv backbone
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Figure 3.19: YOLOv11 with DWConv backbone

3.4.3 YOLO-Mish and YOLO-GELU

Figure 3.20: Conv module with Mish and GELU activation functions

To improve gradient flow and feature learning in YOLOv8 and YOLOv11, we
propose replacing the SiLU activation function within Conv modules with Mish and
GELU, creating YOLO-Mish and YOLO-GELU variants. Figure 3.20 illustrates this
modification, where the original Conv2D-BatchNorm2D-SiLU structure is adapted to
incorporate Mish or GELU. These activation functions, known for their smooth gra-
dients and adaptive non-linearity, enhance convergence speed and detection accuracy
without altering the backbone or neck architecture, preserving the models’ founda-
tional design while optimizing performance for complex object detection tasks.
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3.5 Model Training
This study evaluates the performance of YOLOv8 and YOLOv11 variants for sur-

gical instrument detection and segmentation through a structured training process. To
optimize efficiency, training is conducted in parallel using a local RTX-3070 GPU
and Google Colab Pro’s A1 GPU, a cloud-based platform enabling scalable compu-
tation without local setup requirements. Leveraging this hybrid approach accelerates
convergence by balancing local and cloud resources. Each model—YOLOv8 and
YOLOv11—offers five variants (nano, small, medium, large, extra-large), differing
in parameter scale yet retaining identical architectures. For computational efficiency
and experimental consistency, we adopt the small (s) variants, balancing accuracy and
resource demands.

Hyperparameters are standardized to ensure reproducible outcomes: 100 epochs,
batch size of 16, input image size of 640×640 pixels, seed value of 0, dropout rate of
0.0, IoU threshold of 0.7, initial learning rate (lr0) of 0.01, final learning rate (lrf) of
0.01, momentum of 0.937, and weight decay of 0.0005. A warm-up phase is imple-
mented with 3 epochs, momentum of 0.8, and bias learning rate of 0.1, facilitating
gradual parameter adaptation. The loss function is tuned with box loss at 7.5, class
loss at 0.5, distribution focal loss (DFL) at 1.5, pose loss at 12.0, key object loss
(kobj) at 1.0, and synchronization batches (nbs) at 64, optimizing both detection and
segmentation precision.

Data augmentation enhances robustness to endoscopic image variability, employ-
ing hue shift (hsvh) of 0.015, saturation shift (hsvs) of 0.7, and value shift (hsvv) of 0.4.
These settings mitigate color inconsistencies, improving generalization to real-world
surgical scenarios. This configuration ensures high accuracy and computational effi-
ciency, with validation loss and mAP@50 metrics tracked across epochs, providing
insights into model convergence and performance.

During training, we obtain line graphs depicting loss values and mAP@50 based
on the validation set for each model, as shown below:
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(a) YOLOv8 (b) YOLOv11

Figure 3.21: YOLOv8 and YOLOv11 training process

(a) YOLOv8-Ghost (b) YOLOv11-Ghost

Figure 3.22: YOLOv8-Ghost and YOLOv11-Ghost training process

(a) YOLOv8-C3Ghost (b) YOLOv11-C3Ghost

Figure 3.23: YOLOv8-C3Ghost and YOLOv11-C3Ghost training process
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(a) YOLOv8-DWConv (b) YOLOv11-DWConv

Figure 3.24: YOLOv8-DWConv and YOLOv11-DWConv training process

(a) YOLOv8-Mish (b) YOLOv11-Mish

Figure 3.25: YOLOv8-Mish and YOLOv11-Mish training process

(a) YOLOv8-GELU (b) YOLOv11-GELU

Figure 3.26: YOLOv8-GELU and YOLOv11-GELU training process
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3.6 Evaluation Metrics
Evaluating the efficacy of object detection models is critical for validating their

performance in detecting surgical instruments within endoscopic imagery. This study
employs Precision, Recall, Mean Average Precision (mAP), and Frames Per Second
(FPS) to assess the proposed YOLOv8 and YOLOv11 variants, providing a com-
prehensive framework to measure accuracy, coverage, and real-time applicability in
surgical contexts. Precision, quantifying the accuracy of instrument predictions, is
defined as:

P =
TP

TP+FP
, (3.7)

where TP represents correctly identified tools and FP denotes erroneous detections.
High precision ensures minimal false positives, vital for reliable tool identification
during surgery, though it must be complemented by Recall to address missed instru-
ments.

Recall, evaluating the model’s ability to detect all surgical instruments present, is
calculated as:

R =
TP

TP+FN
, (3.8)

where FN indicates undetected tools. Elevated recall signifies comprehensive cover-
age in operative settings, yet it may increase false positives, necessitating a balanced
assessment with Precision. Mean Average Precision (mAP) integrates these metrics,
offering a holistic evaluation of detection accuracy. mAP@50, measured at an Inter-
section over Union (IoU) threshold of 0.5, defined as:

IoU =
Intersection

Union
, (3.9)

reflects precision at moderate localization. For a more stringent evaluation, mAP@50:95
(COCO mAP) computes the mean across IoU thresholds from 0.50 to 0.95 in 0.05 in-
crements:

mAP50:95 =
1

10

0.95

∑
IoU=0.50

mAPIoU, (3.10)

assessing robustness across diverse localization demands, such as varying instrument
sizes and occlusions in surgical scenarios.

Frames Per Second (FPS) measures inference speed by counting frames processed
per second, a critical factor in real-time performance for intraoperative tool tracking,
where delays affect surgical precision. Alongside Precision and Recall for detection
fidelity, mAP for localization and classification accuracy, and FPS for operational
efficiency, these metrics ensure a thorough evaluation of enhanced YOLO models,
optimizing instrument detection in surgical applications.
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Chapter 4

Experimental Results

This chapter presents experimental outcomes, encompassing both qualitative and
quantitative evaluations of the proposed YOLOv8 and YOLOv11 variants on our in-
stance segmentation our test dataset. Additionally, it includes an analysis of surgical
skill assessment based on instrument detection results, providing insights into model
performance and practical utility in real-world surgical scenarios. These findings
validate the efficacy of the enhanced architectures and inform their applicability for
intraoperative tool tracking and skill evaluation.

4.1 Inference Speed Assessment
Inference speed is a critical determinant of practical utility for surgical instrument

detection models in endoscopic procedures. This study assesses the processing effi-
ciency of YOLOv8 and YOLOv11 using Frames Per Second (FPS) on an NVIDIA
RTX 3070 GPU with the our dataset, trained over 100 epochs, requiring approxi-
mately 2 hours per model. Two inference conditions are evaluated: offline processing
of pre-recorded endoscopic videos and real-time processing of live camera feeds.

Offline inference yields mean FPS values of 85.2 ± 2.1 for YOLOv8 and 78.4 ±
1.8 for YOLOv11, demonstrating robust performance on static data. Real-time in-
ference, however, results in reduced FPS—81.3 ± 2.0 for YOLOv8 and 75.6 ± 1.7
for YOLOv11—owing to additional computational overhead from camera sampling,
image preprocessing, and data transfer latency. These findings, expressed with stan-
dard deviations to reflect variability across runs, indicate that both models sustain
high inference rates suitable for intraoperative applications, with YOLOv8 exhibit-
ing a marginal advantage in processing speed. The observed real-time performance
decrement aligns with expected system constraints, affirming the models’ efficacy for
time-sensitive surgical tool tracking despite operational challenges.
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4.2 Quantitative Results
This section evaluates the performance of YOLOv8, YOLOv11, and their opti-

mized variants (GhostConv, C3Ghost, DWConv, Mish, GELU) in detecting and seg-
menting surgical instruments using the M2CAI16-Tool dataset. Precision (P), Recall
(R), mean Average Precision (mAP@0.5, mAP@0.5:0.95), and parameter count are
assessed to measure accuracy, coverage, and computational efficiency, vital for real-
time surgical applications. Detection and instance segmentation results are reported
in Tables 4.1 and 4.2, comparing YOLOv8-based and YOLOv11-based models se-
quentially.

Table 4.1: Detection performance metrics of YOLOv8 and YOLOv11 variants

Model Params (M) P R mAP@0.5 mAP@0.5:0.95

YOLOv8 11.8 0.888 0.855 0.902 0.801
YOLOv8-Ghost 10.6 0.862 0.875 0.899 0.799
YOLOv8-C3Ghost 8.9 0.871 0.853 0.891 0.779
YOLOv8-DWConv 9.5 0.863 0.851 0.894 0.786
YOLOv8-Mish 11.8 0.861 0.868 0.903 0.791
YOLOv8-GELU 11.8 0.888 0.840 0.898 0.803
YOLOv11 10.1 0.888 0.846 0.900 0.804
YOLOv11-Ghost 8.7 0.887 0.860 0.904 0.800
YOLOv11-C3Ghost 7.9 0.879 0.846 0.887 0.778
YOLOv11-DWConv 7.4 0.869 0.863 0.906 0.806
YOLOv11-Mish 10.1 0.872 0.865 0.900 0.801
YOLOv11-GELU 10.1 0.857 0.886 0.910 0.821

Detection results on our testing dataset are reported in Table 4.1. YOLOv8, with
11.8M parameters, achieves a baseline mAP@0.5:0.95 of 0.801, while YOLOv11, at
10.1M parameters, slightly improves to 0.804. Among variants, YOLOv11-GELU
outperforms with mAP@0.5:0.95 = 0.821, benefiting from GELU’s robust gradient
flow, though its recall trails YOLOv8-Ghost (10.6M). YOLOv11-DWConv, with a
minimal 7.4M parameters (27% reduction), delivers mAP@0.5:0.95 = 0.806, balanc-
ing efficiency and accuracy. In contrast, YOLOv8-C3Ghost and YOLOv11-C3Ghost
(8.9M and 7.9M) record lower mAP@0.5:0.95 values of 0.779 and 0.778, reflecting
a trade-off in localization precision for reduced parameters.

Instance segmentation results on the same dataset are detailed in Table 4.2. YOLOv8
achieves mAP@0.5:0.95 of 0.798 with 11.8M parameters, while YOLOv11-GELU
leads at 0.802 with 10.1M, improving recall and robustness. YOLOv11-DWConv
(7.4M) maintains 0.792, whereas YOLOv8-Ghost and YOLOv11-Ghost (10.6M and
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8.7M) achieve 0.790–0.793 with 10–14% fewer parameters. YOLOv8-C3Ghost and
YOLOv11-C3Ghost (8.9M and 7.9M) show the lowest mAP@0.5:0.95 at 0.775 and
0.772, reflecting reduced segmentation accuracy.

YOLOv11-GELU’s enhanced mAP@0.5:0.95 (0.821 detection, 0.802 instance seg-
mentation) at 10.1M parameters optimizes detection under occlusion, while YOLOv11-
DWConv’s 7.4M parameters prioritize efficiency with competitive accuracy. Ghost-
Conv variants balance both, and C3Ghost sacrifices precision, guiding model selec-
tion for intraoperative tracking based on accuracy or resource constraints.

Table 4.2: Instance segmentation performance metrics of YOLOv8 and YOLOv11
variants

Model Params (M) P R mAP@0.5 mAP@0.5:0.95

YOLOv8 11.8 0.892 0.859 0.906 0.798
YOLOv8-Ghost 10.6 0.862 0.874 0.897 0.790
YOLOv8-C3Ghost 8.9 0.871 0.852 0.891 0.775
YOLOv8-DWConv 9.5 0.871 0.845 0.892 0.783
YOLOv8-Mish 11.8 0.872 0.858 0.905 0.790
YOLOv8-GELU 11.8 0.889 0.842 0.897 0.789
YOLOv11 10.1 0.891 0.850 0.903 0.795
YOLOv11-Ghost 8.7 0.887 0.861 0.903 0.793
YOLOv11-C3Ghost 7.9 0.879 0.846 0.886 0.772
YOLOv11-DWConv 7.4 0.875 0.857 0.905 0.792
YOLOv11-Mish 10.1 0.882 0.855 0.898 0.785
YOLOv11-GELU 10.1 0.862 0.881 0.908 0.802

4.3 Qualitative Results
This section presents qualitative outcomes from experiments evaluating surgical

instrument detection in endoscopic videos using YOLOv8, YOLOv11, and their vari-
ants on the M2CAI16-Tool dataset. Figure 4.1 showcases the models’ capability to ac-
curately detect and segment instruments across diverse surgical scenes, despite chal-
lenges such as variable lighting and overlapping objects. Examples include precise
identification of a Grasper, Hook, Irrigator, and combined Grasper-Specimen Bag
instances, demonstrating robust performance in complex environments.

Despite these strengths, misclassification errors persist in certain frames, as illus-
trated in Figure 4.2. In one instance, a body part is mistaken for a Specimen Bag with
a prediction probability of 0.45, while in another, a Hook is incorrectly identified un-
der low-light conditions. These errors stem from imperfect lighting, object overlap,
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(a) Grasper detection (b) Hook detection

(c) Irrigator detection (d) Grasper and Specimen Bag detection

Figure 4.1: Successful detection and segmentation of surgical instruments in
endoscopic videos

and visual similarities between instruments and background, complicating accurate
prediction. Raising the detection threshold could reduce false positives, though it
risks missing true instruments, necessitating a balanced approach to optimize intra-
operative tool tracking.

(a) Misclassification of a body part as
Specimen Bag (probability = 0.45)

(b) Misclassification of Hook in low-light
conditions

Figure 4.2: Misclassification examples in surgical instrument detection

4.4 Evaluation of Surgical Performance
This section assesses surgical performance across five test videos from the M2CAI16-

Tool dataset, evaluating instrument detection accuracy and inferring surgeon skill
based on tool usage patterns. Detection accuracy is determined by comparing the
algorithm’s predicted instrument usage (yellow) with the ground truth (GT) presence
of instruments, which assesses laparoscopic proficiency through observable metrics
such as tool usage frequency, switching patterns, and procedural efficiency derived
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from GT data. However, manual GOALS evaluation is limited by subjectivity, time-
intensive annotation, and potential bias in interpreting complex surgical scenarios,
necessitating automated approaches for enhanced objectivity. Instrument usage time-
lines provide a quantitative basis for this analysis, focusing on efficiency and skill
inference.

Figure 4.3 presents Surgical Tool Usage Timelines for Videos 1–4, comparing the
algorithm’s predictions (yellow) with GT labels (green) across instruments (Grasper,
Bipolar, Hook, Scissors, Clipper, Irrigator, Specimen Bag). In Video 1 (70 minutes),
Grasper usage aligns closely (GT: 85% of frames), while Hook detection shows a
slight underestimation (GT: 12%), likely due to occlusion. Video 2 (35 minutes) ex-
hibits high Grasper usage (GT: 78%) and consistent Bipolar-Hook overlap. Video 3
(40 minutes) captures varied Grasper-to-Hook transitions (GT: 15 switches), with mi-
nor discrepancies in Irrigator usage. Video 4 (30 minutes) underestimates Specimen
Bag presence (GT: 8%), though Grasper usage remains reliable (GT: 80%). These
results indicate robust detection, with minor deviations attributed to occlusion and
lighting challenges.

Based on the Surgical Tool Usage Timelines depicted in Figure 4.3, an analysis
of surgical skill across the four videos reveals a clear proficiency hierarchy. Video
4 exhibits the most efficient tool utilization, marked by the lowest frequency of tool
switching and continuous use of the Hook instrument, with minimal Bipolar appli-
cation suggesting effective hemostasis or a less invasive approach. Videos 2 and 3
display comparable tool usage patterns, featuring moderate switching frequency, con-
sistent Grasper and Hook dominance, and intermediate Bipolar usage, indicating a
balanced yet less optimized technique. In contrast, Video 1 presents a less efficient
or potentially more complex scenario, distinguished by the highest tool switching fre-
quency and the broadest instrument range, including the unique use of Scissors. The
frequent Bipolar usage in Video 1, compared to others, may reflect increased cauteri-
zation needs. Overall, these timelines establish a skill gradient, with Video 4 demon-
strating the highest efficiency and focused manipulation, followed by Videos 2 and 3
at an intermediate level, and Video 1 indicating a more complex or less streamlined
procedure based on tool usage dynamics.
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(a) Video 1

(b) Video 2

(c) Video 3

(d) Video 4

Figure 4.3: Surgical Tool Usage Timelines for Videos 1–4 in the M2CAI16-Tool
dataset (green: ground truth, yellow: algorithm predictions)
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Figure 4.4: Total instrument usage times

Figure 4.4, illustrating the total instrument usage times per video, provides further
insights into the surgical skills demonstrated. Video 1 exhibits the highest total tool
usage, suggesting a longer or more complex procedure compared to the others. No-
tably, Video 1 is the only video where Scissors are utilized, indicating a possible need
for intricate dissection or tissue manipulation not required in the other videos. While
Grasper usage is consistently dominant across all videos, its significantly higher to-
tal usage in Video 1 contributes substantially to its extended duration. Videos 2, 3,
and 4 show considerably lower and relatively similar total tool usage times, implying
more efficient procedures. Video 4, in particular, presents the lowest total usage time,
hinting at the most streamlined and potentially efficient surgical execution among
the analyzed videos. The consistent use of Hook and Grasper across Videos 2, 3,
and 4, coupled with reduced usage of other tools like Bipolar and Irrigator compared
to Video 1, suggests a more focused and potentially less interventional surgical ap-
proach in these videos, further supporting the inference of varying levels of surgical
efficiency and procedural complexity across the analyzed cases.

4.5 Discussion
The experimental findings of this study reveal a nuanced landscape of performance

trade-offs within YOLOv8 and YOLOv11, and their optimized variants for surgical
instrument detection and segmentation. Our investigation underscores that no single
model universally excels; rather, the optimal choice hinges on the specific demands
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of the application, particularly the balance between accuracy and computational effi-
ciency.

The YOLOv11-DWConv variant emerges as a compelling solution for resource-
constrained settings. Its remarkable 26% parameter reduction compared to the base
YOLOv11, coupled with the attainment of the highest detection mAP@0.5 (0.906)
and near-top segmentation accuracy, highlights the efficacy of Depthwise Convo-
lution in minimizing computational burden without significantly sacrificing perfor-
mance. This efficiency gain is paramount for real-world surgical deployment, espe-
cially on edge devices where computational resources are limited. Conversely, while
the original YOLOv8 achieves the highest segmentation mAP@0.5 (0.906), its larger
parameter footprint renders it comparatively more demanding, suggesting a less effi-
cient trade-off for applications where computational constraints are paramount.

The GhostConv and C3Ghost modifications effectively address model size con-
cerns, achieving notable parameter reductions. However, this efficiency comes at
the expense of a minor dip in segmentation accuracy, indicating a potential trade-
off where fine-grained segmentation precision is critical. These lighter architec-
tures may be particularly advantageous in scenarios prioritizing speed and deploy-
ment simplicity over absolute segmentation detail. In contrast, the integration of ad-
vanced activation functions, Mish and GELU, offers a distinct advantage in detection
performance. Specifically, YOLOv11-GELU achieves the highest overall detection
mAP@0.5 (0.91), signifying enhanced object localization capabilities. The elevated
Recall exhibited by Mish-integrated models further suggests improved performance
in complex scenes with overlapping instruments, potentially due to Mish’s superior
gradient flow and feature retention.

These results underscore a fundamental principle: surgical instrument detection
and segmentation model selection necessitates a careful consideration of application-
specific priorities. For scenarios demanding maximal accuracy, even at a higher com-
putational cost, YOLOv11-GELU stands as a robust choice. Conversely, for resource-
limited environments where real-time performance is paramount, YOLOv11-DWConv
presents an excellent balance of efficiency and accuracy. GhostConv and C3Ghost
variants offer further avenues for extreme model compression, albeit with a slight
compromise in segmentation precision.

Looking ahead, our findings pave the way for future research to address remain-
ing challenges. Firstly, bridging the accuracy-efficiency gap remains crucial. Further
exploration of model compression techniques that minimize accuracy degradation,
alongside hardware optimizations for efficient inference, is warranted. Secondly, en-
hancing robustness to the inherent complexities of endoscopic imagery, including
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lighting variations, occlusions, and biological artifacts, remains a critical direction.
Future work should investigate advanced data augmentation strategies, adaptive im-
age preprocessing techniques, and model architectures inherently resilient to these
challenges. Finally, addressing dataset limitations, particularly regarding size and di-
versity, is essential for improving model generalizability and clinical applicability.
Strategies such as synthetic data generation and multi-institutional data aggregation
could significantly enhance model robustness and real-world performance. By tack-
ling these challenges, future iterations of YOLO-based models can realize their full
potential to revolutionize surgical workflows, ultimately leading to safer, more effi-
cient, and more precise minimally invasive procedures.
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Chapter 5

Conclusion

5.1 Recap of the Main Contributions
This study systematically optimizes and evaluates YOLOv8, YOLOv11, and their

variants (GhostConv, C3Ghost, DWConv, Mish, GELU) for surgical instrument detec-
tion and segmentation in minimally invasive surgery (MIS), using the M2CAI16-Tool
dataset. Through a rigorous experimental framework, we assess processing speed
(FPS), detection accuracy (mAP), and real-world deployability, providing insights
into balancing accuracy and computational efficiency for AI-driven surgical appli-
cations.

The study compares YOLOv8 and YOLOv11, along with their optimized variants,
to reveal performance trade-offs. YOLOv11-DWConv reduces parameters by 26%
(7.4M) compared to YOLOv11 while maintaining a high detection mAP@0.5 (0.906),
demonstrating the effectiveness of Depthwise Convolution for resource-constrained
edge devices. YOLOv11-GELU achieves high detection accuracy with mAP@0.5
(0.910) and mAP@0.5:0.95 (0.821) at 10.1M parameters, highlighting GELU’s adap-
tive activation benefits in complex scenes. GhostConv and C3Ghost reduce model
size (10.6M to 7.9M) but lower segmentation precision, while Mish improves recall
by enhancing gradient flow.

These findings offer significant scientific and practical implications for AI-driven
surgical imaging. YOLOv11-DWConv’s efficiency enables real-time assistance on
edge devices, critical for intraoperative tool tracking, while YOLOv11-GELU’s accu-
racy supports precision-critical tasks. Real-time inference speeds of 81 FPS (video-
based) and 75 FPS (live camera) validate practical applicability. The performance
evaluation across architectures guides model selection based on application needs,
addressing a key challenge in resource-limited surgical environments. Future work
should focus on narrowing the accuracy-efficiency gap, enhancing robustness to en-
doscopic imaging challenges, and expanding dataset diversity to improve clinical gen-
eralizability, paving the way for safer and more efficient MIS procedures.
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5.2 Limitations and Future Directions
This study, while demonstrating notable advancements in YOLOv8 and YOLOv11

variants for surgical instrument detection and segmentation, identifies several lim-
itations that inform future research. A primary constraint is the trade-off between
accuracy and computational efficiency, necessitating the development of advanced
compression techniques and hardware-optimized strategies to preserve performance.
Additionally, the models’ robustness to endoscopic imaging challenges—such as vari-
able lighting, occlusions, and biological artifacts—remains limited, highlighting the
need for adaptive illumination correction, occlusion-resilient detection, and enhanced
segmentation methods. Lastly, the dataset’s restricted size and diversity constrain gen-
eralizability, underscoring the importance of expanding data through multi-institutional
collaborations and synthetic generation to improve clinical applicability.

These findings affirm the efficacy of the optimized YOLO-based models in bal-
ancing accuracy and efficiency for minimally invasive surgery (MIS), laying a foun-
dation for AI-driven surgical assistance. Future research should explore Transformer-
based architectures and Self-Supervised Learning (SSL) to enhance feature extrac-
tion, alongside Edge AI optimizations for real-time deployment. Addressing these
challenges will advance surgical workflows, enabling safer, more efficient, and pre-
cise MIS procedures, and ultimately elevating healthcare quality.
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Publications

The contributions are supported by publications resulting from this master’s thesis
research under the Master of Informatics and Computer Engineering (MICE) pro-
gram, guided by Dr. Kim Dinh Thai and Dr. Manh-Hung Ha, providing validations
for the proposed YOLO enhancements:

(1) An effective method for detecting personal protective equipment at real construc-
tion sites using the improved YOLOv5s with Siou Loss Function. [53]

(2) Emotional inference from speech signals informed by multiple stream DNNs
based non-local attention mechanism. [54]

(3) Surgical tool detection and pose estimation using YOLOv8-pose model: A study
on clipper tool. [55]

(4) Robust surgical tool detection in laparoscopic surgery using YOLOv8 model.
[56]

Within the research group, I was given the valuable opportunity to delve deeply
into the YOLO (You Only Look Once) object detection framework. Through collab-
orative discussions, hands-on experiments, and critical analyses, I was able to gain
a comprehensive understanding of how the YOLO model operates, how it balances
speed and accuracy, and how it can be adapted to meet various application demands.
This exploration was not limited to theoretical learning, but extended to practical
implementation, performance evaluation, and the examination of potential areas for
enhancement. The supportive academic environment and guidance from experienced
mentors allowed me to cultivate both technical knowledge and research skills, which
were essential for identifying meaningful directions for improvement. These experi-
ences directly contributed to the development and validation of the proposed YOLO
enhancements presented in this thesis.
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[15] B. Radojcić et al. “Medicinski pregled”. In: Medicinski pregled 62.11-12 (2009),
pp. 597–602.

[16] Luca Bertolaccini and Gaetano Rocco. “History and development of minimally
invasive surgery: VATS surgery”. In: Shanghai Chest 3 (2019).

[17] Mengyu Zhou et al. “A lightweight segmentation network for endoscopic surgi-
cal instruments based on edge refinement and efficient self-attention”. In: PeerJ

Computer Science 9 (2023), e1746.

[18] Wikimedia Foundation. Thresholding (Image Processing). Wikipedia. Aug. 2024.
URL: https://en.wikipedia.org/wiki/Thresholding_(image_processing).

[19] Wikimedia Foundation. Gradient Vector Flow. Wikipedia. Feb. 2025. URL:
https://en.wikipedia.org/wiki/Gradient_vector_flow.

[20] Zijian Wu et al. “Augmenting efficient real-time surgical instrument segmenta-
tion in video with point tracking and Segment Anything”. In: Healthcare Tech-

nology Letters 12.1 (2025), e12111.

[21] Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep
neural networks”. In: nature 542.7639 (2017), pp. 115–118.

[22] Fabian Isensee et al. “nnu-net: Self-adapting framework for u-net-based medical
image segmentation”. In: arXiv preprint arXiv:1809.10486 (2018).

[23] Christoph Baur et al. Autoencoders for unsupervised anomaly segmentation in

brain MR images: a comparative study. 2021.

[24] Heang-Ping Chan, Lubomir M Hadjiiski, and Ravi K Samala. “Computer-aided
diagnosis in the era of deep learning”. In: Medical physics 47.5 (2020), e218–
e227.

[25] D. Novotny et al. “Semi-Convolutional Operators for Instance Segmentation”.
In: Lecture Notes in Computer Science. 2018, pp. 89–105. DOI: 10.1007/978-
3-030-01246-5_6.

[26] David Novotny et al. “Semi-convolutional operators for instance segmentation”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 86–102.

47

https://en.wikipedia.org/wiki/Thresholding_(image_processing)
https://en.wikipedia.org/wiki/Gradient_vector_flow
https://doi.org/10.1007/978-3-030-01246-5_6
https://doi.org/10.1007/978-3-030-01246-5_6


[27] Xiaosong Wang et al. “Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common
thorax diseases”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2017, pp. 2097–2106.

[28] Alistair EW Johnson et al. “MIMIC-CXR, a de-identified publicly available
database of chest radiographs with free-text reports”. In: Scientific data 6.1
(2019), p. 317.

[29] Maria Correia de Verdier et al. “The 2024 Brain Tumor Segmentation (BraTS)
challenge: glioma segmentation on post-treatment MRI”. In: arXiv preprint

arXiv:2405.18368 (2024).

[30] Samuel G Armato III et al. “The lung image database consortium (LIDC) and
image database resource initiative (IDRI): a completed reference database of
lung nodules on CT scans”. In: Medical physics 38.2 (2011), pp. 915–931.

[31] Amber L Simpson et al. “A large annotated medical image dataset for the
development and evaluation of segmentation algorithms”. In: arXiv preprint

arXiv:1902.09063 (2019).

[32] Andru P Twinanda et al. “Endonet: a deep architecture for recognition tasks on
laparoscopic videos”. In: IEEE transactions on medical imaging 36.1 (2016),
pp. 86–97.

[33] Ravimal Bandara. “Image segmentation using unsupervised watershed algo-
rithm with an over-segmentation reduction technique”. In: arXiv preprint arXiv:1810.03908

(2018).

[34] Xu Chen et al. “Learning active contour models for medical image segmen-
tation”. In: Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition. 2019, pp. 11632–11640.

[35] Zan Li et al. “Residual-attention UNet++: a nested residual-attention U-net for
medical image segmentation”. In: Applied Sciences 12.14 (2022), p. 7149.

[36] Ozan Oktay et al. “Attention u-net: Learning where to look for the pancreas.
arXiv”. In: arXiv preprint arXiv:1804.03999 10 (2018).
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