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Pose Estimation of Surgical Instruments using Convolutional Neural Networks
for MIS Applications

by Tran Duc Vinh

Accurate detection and pose estimation of surgical instruments are critical for
computer-assisted interventions (CAI) and robotic-assisted surgeries. This research
proposes an innovative method for detecting and estimating the pose of multiple
surgical tools using the YOLOv8-pose model. A comprehensive dataset comprising
images of clippers, irrigators, and scissors was meticulously collected and annotated
to train the model, facilitating precise localization and orientation estimation of these
instruments during laparoscopic procedures.

The performance of the model was assessed using a test dataset across four vari-
ants of YOLOv8-pose. Notably, the YOLOv8n variant, characterized by its lightweight
architecture with only 3 million parameters, exhibited superior performance in both
pose estimation and object detection tasks. For pose estimation, it achieved a Preci-
sion of 91%, Recall of 93%, mean Average Precision at IoU 0.5 (mAP@0.5) of 97.9%,
and mAP@0.5-0.95 of 88.7%, underscoring its capability to reliably track surgical in-
struments. In terms of object detection, the model recorded a Precision of 97.9%, Re-
call of 96.0%, mAP@0.5 of 99.2%, and mAP@0.5-0.95 of 64.6%, demonstrating robust
identification and real-time tracking of multiple instruments in surgical settings.

These findings affirm YOLOv8n as an exceptionally efficient model for real-time
surgical instrument tracking and pose estimation, rendering it highly suitable for
integration into robotic-assisted and minimally invasive surgical systems. Further-
more, this study establishes a foundation for extending the methodology to encom-
pass additional surgical instruments, thereby advancing automation and precision
in Al-driven surgical technologies.
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Chapter 1

Introduction

1.1 Rationale

Recent advancements in computer vision and artificial intelligence (AlI) have signifi-
cantly reshaped numerous industries, with medical technology standing out as a do-
main of immense potential. Within this realm, pose estimation—defined as the pro-
cess of ascertaining the position and orientation of an object or tool—has emerged
as a pivotal technique, particularly in the field of robotic-assisted surgery. The core
objective of pose estimation in surgical applications is to enable precise tracking of
instruments during procedures, thereby enhancing procedural safety, accuracy, and
efficiency (Hasan et al., 2021).

The escalating complexity of modern surgical interventions has rendered tradi-
tional manual tracking methods insufficient for maintaining the precision demanded
by contemporary standards. Human factors such as error, fatigue, and the inher-
ent limitations of visual perception in detecting minute movements introduce sub-
stantial risks during operations. In this context, pose estimation provides a sophis-
ticated technological solution, ensuring that surgical instruments are consistently
maintained in their intended positions and orientations throughout procedures, thus
reducing potential errors and bolstering patient safety.

The deployment of pose estimation systems in surgical settings facilitates contin-
uous, real-time monitoring of tools, enabling integration with automated systems to
assist surgeons in precise instrument manipulation. Such systems can be seamlessly
embedded within robotic surgical platforms, offering enhanced feedback to both
robotic mechanisms and human operators. This functionality is especially critical in
minimally invasive surgeries (MIS), where precision in tool handling is essential to
minimize damage to surrounding healthy tissues (Le et al., 2023).

This study is motivated by the pressing need to advance surgical practices through
technological innovation. Specifically, it aims to develop a system capable of detect-
ing and estimating the pose of surgical instruments with high accuracy. Although
pose estimation has found widespread application in domains such as manufactur-
ing, augmented reality, and gaming, its integration into the medical field—particularly
for surgical tool tracking—remains relatively underexplored. This research seeks to
address this gap by investigating the potential of pose estimation to enhance the
efficacy and safety of surgical procedures (Hager, Chang, and Morse, 1995).

Furthermore, with the rising prevalence of robotic-assisted surgeries, the provi-
sion of accurate, real-time data on surgical tool poses has become increasingly vital.
Improved pose detection can mitigate costly procedural errors, ensure proper instru-
ment application, and ultimately elevate patient outcomes. Additionally, this tech-
nology offers significant value in medical training, delivering real-time feedback on
surgical performance and aiding novice surgeons in mastering correct instrument-
handling techniques (Wang et al., 2019).
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Ultimately, this research endeavors to establish an efficient and reliable pose es-
timation system for surgical tools, aiming to revolutionize surgical practices. By
contributing to the evolution of cutting-edge medical technologies, this study aims
to empower healthcare professionals to deliver safer and more effective treatments,
thereby advancing the frontier of Al-driven surgical innovation.

1.2 Aim and Objectives of the Study

1.2.1 Aim

The central aim of this study is to develop and assess a pose estimation system de-
signed for the real-time detection and tracking of surgical instruments, harnessing
advanced frameworks in computer vision and machine learning. This research seeks
to elevate the precision, efficiency, and safety of minimally invasive surgeries (MIS)
and robotic-assisted procedures by enabling accurate determination of tool posi-
tion and orientation. By advancing pose estimation technologies, the study aspires
to contribute to the broader landscape of Al-driven surgical systems, fostering im-
proved procedural outcomes and supporting the evolution of intelligent automation
in surgical practice.

1.2.2 Objectives

To achieve this overarching aim, the study outlines a series of objectives that guide
the exploration, development, and evaluation of pose estimation frameworks for
surgical tools within the context of MIS and robotic-assisted surgeries. These ob-
jectives are informed by the theoretical foundations, methodologies, and empirical
findings presented throughout the research:

The primary objective is to design and implement a pose estimation system ca-
pable of real-time detection and tracking of surgical instruments during operative
procedures. Drawing from the technological insights in Chapter 2, this system will
leverage camera-based solutions and machine learning frameworks to ensure pre-
cise localization and orientation estimation, enhancing surgical precision and patient
safety across dynamic operative environments.

A key goal is to compile and preprocess a robust dataset to support the training
and validation of pose estimation models, as elaborated in Chapter 3. This dataset
will encompass annotated endoscopic images of various surgical tools—such as clip-
pers, irrigators, and scissors—captured under diverse conditions, with augmenta-
tion techniques applied to improve model adaptability and generalization to real-
world surgical scenarios.

Another essential objective is to evaluate the performance of pose estimation
frameworks, focusing on their accuracy, processing speed, and robustness, as evi-
denced by the experimental results in Chapter 4. The study will assess these sys-
tems against standardized metrics, including precision, recall, and mean average
precision (mAP), to identify optimal approaches for real-time tracking of surgical
instruments in MIS contexts.

The research also seeks to compare the developed pose estimation system with
established techniques in the field, as discussed in Chapter 4. This comparative anal-
ysis will explore a range of frameworks—spanning traditional methods like marker-
based tracking to modern deep learning approaches—to highlight their respective
strengths, limitations, and suitability for surgical applications, emphasizing compu-
tational efficiency and practical deployment.
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A further objective is to investigate the practical utility of pose estimation sys-
tems in real-world surgical settings, as outlined in Chapter 4. This includes their
integration with robotic surgery platforms to provide real-time positional feedback,
thereby enhancing surgeon control and procedural accuracy. Additionally, the study
aims to explore their role in surgical training by enabling movement tracking and
performance assessment, fostering skill development among practitioners.

Finally, the study aims to delineate future research directions to expand the ca-
pabilities of pose estimation technologies, as proposed in Chapters 4 and 5. This
encompasses broadening the scope to additional surgical instruments, incorporat-
ing 3D pose estimation through depth information, integrating augmented reality
(AR) for enhanced visualization, and exploring advanced learning paradigms—such
as semi-supervised methods—to reduce dependency on extensive manual annota-
tions. These efforts seek to lay a foundation for increased automation and autonomy
in future surgical systems.

Through these objectives, this research endeavors to deliver a versatile, efficient,
and robust pose estimation framework that enhances the efficacy of robotic-assisted
and minimally invasive surgical procedures, while establishing a platform for ongo-
ing advancements in Al-supported medical technologies.

1.3 Research questions

The research aims to address several key questions that will guide the development,
implementation, and evaluation of the pose estimation system for surgical tools.
These questions focus on both the technical aspects of the system and its practical
application in a surgical environment. The primary research questions are as fol-
lows:

1. How accurate and reliable can the pose estimation system be in detecting and
tracking the position and orientation of surgical tools in real-time?

2. Which pose estimation algorithms provide the best balance between accuracy,
speed, and robustness when applied to the tracking of surgical tools?

3. What type of data (e.g., images, sensor data, etc.) and camera setup are most
effective for training and operating the pose estimation system in a real-world
surgical setting?

4. How can the pose estimation system be integrated into a robotic surgery plat-
form to improve surgical precision and provide real-time feedback to surgeons?

5. What are the challenges and limitations of using pose estimation for surgical
tool tracking, and how can they be addressed?

6. Can the pose estimation system be scaled or adapted for use with a variety of
surgical tools and in different types of surgeries?

7. What are the potential benefits and drawbacks of using pose estimation in
real-time surgical tool tracking, from both a clinical and a technological per-
spective?
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1.4 Methods of the Study

This study employs a blend of qualitative and quantitative research methodologies
to investigate pose estimation frameworks for surgical tool tracking, aiming to ad-
dress the outlined research questions and objectives. The approach integrates multi-
ple stages, from theoretical groundwork to practical evaluation, ensuring a compre-
hensive exploration of the system’s development and application in surgical con-
texts.

The research begins with a systematic literature review to synthesize existing
knowledge on pose estimation, computer vision, and surgical instrument tracking.
This step establishes a theoretical foundation by identifying current technologies,
methodologies, and gaps in the field, particularly within minimally invasive surgery
(MIS) and robotic-assisted procedures, which informs subsequent system design
and development efforts.

The development of the pose estimation system involves designing a frame-
work tailored for real-time detection and tracking of surgical tools. This process in-
cludes selecting suitable algorithms—spanning traditional and deep learning-based
approaches—and constructing a software platform capable of processing endoscopic
data. A diverse dataset of surgical tool images featuring instruments like clippers,
irrigators, and scissors is meticulously curated from real-world surgical videos. This
dataset is preprocessed and annotated with keypoints to provide ground truth, en-
hancing the system’s ability to generalize across varied surgical scenarios.

Training and testing form a core component of the methodology, where the col-
lected dataset is utilized to refine machine learning models optimized for pose es-
timation tasks. Convolutional neural networks (CNNs) and other advanced archi-
tectures are trained, with hyperparameters tuned to balance accuracy and compu-
tational efficiency. The trained system is then rigorously tested on unseen data to
evaluate its real-time tracking performance and adaptability to dynamic conditions
such as occlusions and variable lighting.

Evaluation of the system’s effectiveness is conducted through a suite of perfor-
mance metrics, including accuracy, speed, and robustness, under simulated surgical
conditions. A comparative analysis benchmarks the proposed framework against
existing pose estimation techniques, highlighting its strengths in precision and ef-
ficiency. The system is further integrated with a robotic surgery platform to assess
its capacity to deliver real-time feedback, enhancing surgical precision and decision-
making in practical settings.

Qualitative insights complement the quantitative findings by gathering feedback
from medical professionals and surgeons on the system’s usability and potential
impact on surgical practices. This dual approach ensures a holistic understanding
of both technical performance and clinical applicability, addressing challenges like
data dependency and computational demands while identifying opportunities for
real-world deployment and future enhancements.

1.5 Scope of the Study

This study centers on the development and evaluation of a pose estimation system
tailored for surgical instruments, with the overarching goal of enhancing the preci-
sion and safety of robotic-assisted surgery. The research delves into the application
of advanced computer vision and machine learning techniques, particularly deep
learning models such as convolutional neural networks (CNNSs), to enable real-time
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detection and tracking of surgical tool positions and orientations. By focusing on
these technological domains, the study seeks to establish a robust framework capa-
ble of addressing the dynamic demands of surgical environments, thereby contribut-
ing to the broader advancement of automated surgical technologies.

The investigation targets a selection of commonly utilized surgical tools, includ-
ing clippers, irrigators, and scissors, which are integral to minimally invasive pro-
cedures. The primary emphasis lies in monitoring the spatial positioning and ori-
entation of these instruments during surgical operations, ensuring accurate tracking
within the operative field. This focus is grounded in the need to provide reliable data
that can support surgical precision, particularly in scenarios where manual oversight
alone may prove insufficient.

The pose estimation system is developed and assessed within a simulated surgi-
cal environment, utilizing recorded endoscopic videos and imagery as the primary
data source. This controlled setting serves as the foundation for training and validat-
ing the system, allowing for an initial evaluation of its performance before potential
application in more realistic or clinical contexts. The reliance on simulation reflects
a pragmatic approach to testing under replicable conditions, facilitating a compre-
hensive analysis of the system’s capabilities across a spectrum of surgical scenarios.

Evaluation of the system encompasses a thorough assessment of its accuracy,
processing speed, and robustness, conducted under diverse conditions such as vari-
able lighting, occlusions, and differing tool configurations. These performance met-
rics are critical to determining the system’s efficacy in real-time tracking, a corner-
stone of its intended utility in robotic-assisted surgery. Additionally, the research
explores the feasibility of integrating the pose estimation framework with existing
robotic surgery platforms, with a particular interest in its potential to deliver action-
able real-time feedback to surgeons, thereby enhancing procedural decision-making
and control.

The scope of this study is deliberately bounded, excluding the design or develop-
ment of robotic surgery systems themselves, as well as the direct implementation of
the pose estimation framework in live clinical settings. Instead, the focus remains on
the conceptualization, implementation, and evaluation of the pose estimation sys-
tem, with future investigations proposed to bridge the gap toward practical surgical
applications. The research is further constrained by the availability and diversity
of training data, which may limit the system’s ability to generalize across all pos-
sible surgical conditions and tool types. Moreover, the study prioritizes tools and
procedures typical of standard medical practice, eschewing exploration into highly
specialized or complex surgical interventions.

1.6 Main Contributions

This thesis advances the field of surgical instrument pose estimation through deep
learning by presenting the following key contributions:

(1) YOLOVS8-Pose Based System for Surgical Tool Detection: This study devel-
ops and evaluates a real-time system using YOLOv8-Pose for detecting and
estimating the pose of surgical tools—clippers, irrigators, and scissors—in la-
paroscopic surgery. It analyzes the model’s architecture, training, and perfor-
mance, highlighting its precision and efficiency for intraoperative use.
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)

®)

(4)

©)

Curated Dataset and Annotation: A specialized dataset of laparoscopic surgery
images, derived from the m2cail6-tool-locations dataset and enriched with ad-
ditional sources, was curated and annotated with precise keypoints for mul-
tiple surgical tools. Utilizing the Computer Vision Annotation Tool (CVAT),
this meticulously documented resource enhances training and benchmarking
of pose estimation models, addressing a critical need in medical Al research.

Comparative Analysis: A thorough comparison of YOLOv8-Pose with YOLOv5-
Pose, HRNet, and OpenPose demonstrates its superiority in accuracy, speed,
and computational efficiency for surgical tool tracking, especially with the
lightweight YOLOv8n variant in real-time medical applications.

Real-Time Performance and Practical Applicability: The study showcases
YOLOV8-Pose’s real-time capabilities, enabling seamless integration into robotic-
assisted surgery, augmented reality navigation, and surgical training systems.
Its practical implications for enhancing minimally invasive procedures are sub-
stantiated through optimized performance on embedded devices like Jetson
Nano.

Published Research: A core component focusing on clipper tool detection and
pose estimation was peer-reviewed and published in the 2024 9th International
Conference on Integrated Circuits, Design, and Verification (ICDV), cited as
Kim et al., "Surgical Tool Detection and Pose Estimation using YOLOv8-pose
Model: A Study on Clipper Tool," pp. 225-229, IEEE, 2024, affirming the work’s
novelty and impact within the research community.
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Chapter 2

Minimally Invasive Surgery and
Pose Estimation

2.1 Minimally Invasive Surgery

Minimally Invasive Surgery (MIS) has emerged as a transformative approach in
modern medicine, redefining surgical practices by prioritizing reduced invasiveness
over traditional open techniques. Unlike conventional surgery, which relies on large
incisions to access internal organs, MIS utilizes small incisions—commonly referred
to as “keyhole surgery”—through which specialized instruments and endoscopic
cameras are deployed. This method substantially diminishes tissue trauma, allevi-
ates postoperative pain, reduces infection risks, and expedites recovery, ultimately
lowering hospital stays and healthcare costs (Fuchs, 2005; Mack, 2001). The histori-
cal milestone of laparoscopic cholecystectomy in the late 1980s marked the onset of
MIS’s widespread adoption, extending its application across specialties such as gy-
necology, urology, orthopedics, and general surgery, thereby enhancing patient out-
comes through minimized morbidity and improved cosmetic results (Reynolds2001;
Dubois et al., 1990).

Despite its advantages, MIS poses significant challenges for surgeons. The re-
liance on two-dimensional endoscopic imagery restricts the field of view and im-
pairs depth perception, while the absence of direct haptic feedback—integral to tra-
ditional surgery—complicates precise manipulations. Surgeons must adapt through
enhanced hand-eye coordination and specialized training to navigate these limita-
tions effectively (Okamura, 2009; Gallagher et al., 2003). These inherent difficulties
underscore the need for technological innovations to bolster MIS’s efficacy, ensuring
its benefits are fully realized in clinical practice.

To address these challenges, advanced technologies have been integrated into
MIS workflows, significantly enhancing surgical capabilities. Computer vision plays
a pivotal role by enabling real-time recognition and tracking of surgical instruments,
thereby improving visualization and procedural monitoring. This technology em-
ploys sophisticated algorithms to ascertain tool positions and orientations, offering
critical feedback to surgeons (Maier et al., 2019). Similarly, artificial intelligence (AI)
augments surgical decision-making through predictive analytics and automation of
routine tasks, such as suturing, while analyzing video streams to detect anomalies
and optimize strategies (Hashimoto et al., 2018). Robotic-assisted systems, epito-
mized by platforms like the da Vinci Surgical System, further elevate precision and
dexterity, allowing surgeons to execute complex procedures with reduced error and
tremor (Lanfranco et al., 2004).

Complementing these advancements, augmented reality (AR) overlays real-time
data—such as 3D anatomical models and critical structure highlights—onto the sur-
geon’s visual field, enhancing navigational accuracy and procedural safety (Meola et
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al., 2017). Virtual reality (VR) and simulation training provide immersive, risk-free
environments for skill development, proving indispensable for mastering intricate
MIS techniques and assessing surgical proficiency (McGaghie et al., 2010). Addi-
tionally, haptic feedback devices aim to restore tactile sensation through advanced
sensors and actuators, enabling surgeons to perceive resistance and texture, thus
rendering tool and tissue manipulation more intuitive and potentially minimizing
unintended trauma (Kucuk et al., 2016). Together, these technologies synergistically
enhance the precision, safety, and training associated with MIS, paving the way for
its continued evolution in surgical practice.

2.2 Surgical Instruments and Pose Estimation

Laparoscopic surgery necessitates the use of specialized instruments engineered for
precision and adaptability, designed to operate through minimal incisions within
confined anatomical spaces. These tools must deliver high maneuverability and con-
trol, as surgeons rely predominantly on visual feedback from endoscopic cameras
rather than direct observation. The capacity to manipulate these instruments with
accuracy is paramount to the success of surgical interventions, ensuring minimal
trauma to surrounding tissues while achieving the intended procedural outcomes
(Lim and Erdman, 2003).

The array of instruments employed in laparoscopic surgery is tailored to per-
form intricate tasks within the abdominal cavity. Commonly utilized tools include
graspers, which facilitate the holding, manipulation, and stabilization of tissues or
organs, and scissors, crafted for cutting tissues, sutures, or fibrous structures, often
equipped with curved or angled tips to enhance maneuverability. Clippers are inte-
gral for clamping or ligating blood vessels and ducts, deploying small metal clips to
prevent bleeding, a function critical in procedures such as cholecystectomies. Hooks,
whether sharp or blunt-tipped, serve to lift, separate, or reposition tissues, thereby
improving visibility and access to surgical sites. Additionally, irrigators play a vital
role by flushing the operative field with sterile fluids, clearing debris and maintain-
ing visibility, which reduces infection risks and supports procedural precision (Lim
and Erdman, 2003).

Pose estimation, defined as the determination of a surgical tool’s precise posi-
tion and orientation, is indispensable in laparoscopic and robotic-assisted surgeries,
where accurate instrument tracking underpins successful outcomes. This technol-
ogy enhances surgical precision by providing exact spatial data, enabling surgeons
to execute movements with minimal risk of damaging adjacent healthy tissues—a
necessity in the constrained visibility of minimally invasive procedures. It also bol-
sters surgeon control, offering stability for complex tasks such as suturing or dissec-
tion, where fine motor skills are essential, and mitigates hand tremors through real-
time positional insights. Furthermore, pose estimation delivers continuous feed-
back, improving situational awareness and decision-making by displaying tool posi-
tions on monitors, a feature particularly valuable when integrated with augmented
reality (AR) or Al-driven guidance systems to optimize visualization and reduce
cognitive demands. Beyond manual enhancement, it lays the groundwork for au-
tomation in robotic surgery, enabling Al systems to perform tasks like precise sutur-
ing or retraction, thus alleviating surgeon fatigue and enhancing procedural repro-
ducibility (Maier et al., 2019; Weber et al., 2018).
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To be effective in the dynamic environment of laparoscopic surgery, a pose es-
timation system must fulfill stringent requirements. It needs to accurately com-
pute the three-dimensional position and orientation of each instrument, achieving
sub-millimeter precision to safeguard delicate anatomical structures during intri-
cate maneuvers. Real-time processing is equally critical, as any latency could jeop-
ardize safety and efficacy by delaying feedback essential for immediate adjustments.
The system must also exhibit robustness against challenges such as occlusions from
tissues or other tools, variable lighting conditions, and reflections from metallic sur-
faces, ensuring consistent performance despite these adversities. Compatibility with
a diverse range of instruments—varying in shape, size, and function—is necessary
to avoid frequent recalibration, while a minimal computational footprint ensures
practicality for deployment on embedded surgical platforms. Additionally, the sys-
tem must adeptly track rapid and complex surgical movements, resisting disrup-
tions from motion blur or abrupt shifts to support the precise articulation demanded
in robotic-assisted procedures (Maier et al., 2019; Xu and Giannarou, 2024).

The application of pose estimation in laparoscopic surgery encounters several
inherent challenges due to the constrained and dynamic nature of the abdominal
cavity. The limited field of view provided by endoscopic cameras restricts tracking
when instruments exit the visible range, potentially disrupting positional continuity
and complicating trajectory estimation. Occlusions, caused by overlapping tissues,
tools, or camera obstructions, further hinder consistent tracking, necessitating ad-
vanced strategies like temporal analysis or depth modeling to maintain accuracy.
Moreover, variable lighting within the body cavity—exacerbated by glare, shadows,
and uneven illumination—introduces noise that can impair image quality and fea-
ture extraction, posing additional hurdles to reliable pose computation. These chal-
lenges underscore the need for sophisticated preprocessing and adaptive algorithms
to ensure robust performance in real-world surgical settings (Xu and Giannarou,
2024).

2.3 Pose Estimation Methods

Pose estimation holds a pivotal role across various healthcare applications, ranging
from surgical assistance and medical imaging to patient monitoring, where precise
spatial awareness is paramount (Maier et al., 2019). In the domains of laparoscopic
surgery and surgical robotics, the ability to determine the position and orientation of
instruments in real time is vital for enhancing procedural accuracy and safeguarding
patient outcomes (Pedram et al., 2016). The methodologies employed in pose esti-
mation can be broadly classified into traditional techniques, which often depend on
external aids, and modern deep learning-based approaches that leverage advanced
computational models to interpret visual data directly.

2.3.1 Traditional Methods in Medical Pose Estimation

Traditional pose estimation methods in medical contexts typically rely on external
markers or sensors affixed to the objects being tracked, offering reliable solutions in
controlled settings but facing limitations in the unpredictable dynamics of surgical
environments. Marker-based tracking involves attaching physical markers—often
reflective or distinctly colored—to surgical instruments or patient anatomy, which
are then monitored by cameras to provide precise three-dimensional localization
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(Speidel et al., 2006). While this approach excels in accuracy and ease of integra-
tion under stable lighting, its effectiveness diminishes when occlusions from tis-
sues, blood, or other tools disrupt visibility. Optical tracking, another prevalent
technique, employs infrared cameras to detect reflective markers, delivering high-
precision data crucial for systems like the da Vinci robotic platform (Groeger, Arbter,
and Hirzinger, 2008). However, its sensitivity to environmental factors such as in-
tense lighting or obstructions, coupled with the necessity for an unobstructed line of
sight, can constrain its utility in complex surgical scenarios. Electromagnetic (EM)
tracking utilizes small sensors within a magnetic field to ascertain instrument po-
sitions, circumventing the need for direct visibility and proving advantageous in
obscured surgical regions (Lugade et al., 2015). Yet, its susceptibility to interference
from metallic objects—common in operating rooms—can compromise accuracy. Me-
chanical tracking, by contrast, integrates sensors into robotic arms or linkages to
directly measure tool movements, ensuring exceptional precision and immunity to
external conditions like lighting (Lugade et al., 2015). Nevertheless, its reliance on
physical constraints limits motion range and flexibility, posing challenges in hybrid
or manual procedures, alongside ongoing maintenance demands.

2.3.2 Modern Deep Learning-Based Methods

The advent of deep learning has transformed pose estimation by introducing mark-
erless techniques capable of discerning complex patterns from raw image data, of-
fering enhanced robustness against occlusions and lighting variations compared to
traditional methods. Convolutional Neural Networks (CNNs) stand out as a corner-
stone of this revolution, employing multiple convolutional layers to extract spatial
tfeatures and predict keypoints with high accuracy from medical imagery (O’Shea
and Nash, 2015). Widely applied in tracking surgical instruments and analyzing
patient movements in rehabilitation, CNNs demand substantial labeled datasets
and computational resources, which can hinder real-time deployment on resource-
constrained systems. Recurrent Neural Networks (RNNs), designed for sequential
data processing, excel in tracking motion trajectories and anticipating future move-
ments by retaining contextual memory from prior inputs (Xu et al., 2022). In health-
care, they support applications like patient monitoring and surgical action predic-
tion, though challenges such as the vanishing gradient problem and lengthy train-
ing periods persist, mitigated in part by advanced variants like LSTMs. Trans-
former models, leveraging self-attention mechanisms, capture long-range depen-
dencies across entire images or video frames, surpassing CNNs in processing global
spatial relationships (Doughty and Ghugre, 2022). Their use in surgical video analy-
sis and diagnostic imaging underscores their potential, albeit at the cost of significant
computational overhead and data requirements. Graph Convolutional Networks
(GCNs), meanwhile, model keypoints as interconnected graph structures, adeptly
learning spatial dependencies for precise motion tracking in contexts like physical
therapy and surgical assistance (Wang et al., 2019). Despite their accuracy, GCNs’
computational complexity and sensitivity to noisy data present notable challenges.

2.3.3 Key Considerations for Pose Estimation in Healthcare

Selecting an optimal pose estimation method for healthcare applications necessitates
a careful evaluation of multiple factors to ensure its efficacy and practicality. Accu-
racy remains paramount, as even minor deviations in tracking can lead to critical
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errors in surgical tool alignment or diagnostic interpretation, directly impacting pa-
tient safety. Processing time is equally critical, with real-time performance being
essential to synchronize tracking with surgical actions, requiring low-latency com-
putation to maintain operational flow (Pedram et al., 2016). Robustness to occlu-
sions is a vital consideration, as partial obscurations by tissues or instruments are
commonplace in surgery, necessitating techniques like temporal tracking or depth
inference to sustain reliability (Shotton et al., 2011). Scalability is another key aspect,
demanding that the method seamlessly integrate with diverse surgical systems and
adapt to a variety of instruments, enhancing its versatility across medical contexts.
Finally, computational resource demands must align with available hardware, fa-
voring lightweight models that enable efficient deployment on embedded devices
or robotic platforms without sacrificing performance (Krizhevsky, Sutskever, and
Hinton, 2017). These considerations collectively guide the choice of pose estimation
techniques, balancing precision with practical applicability in healthcare settings.

2.4 Deep Learning Models for Pose Estimation

Deep learning has fundamentally transformed pose estimation by enabling precise
and efficient determination of object position and orientation within intricate en-
vironments, marking a significant leap forward in computational capabilities. In
healthcare, particularly within surgical contexts and medical imaging, these tech-
niques have revolutionized the tracking of surgical instrument movements, the com-
prehension of anatomical structures, and the enhancement of patient monitoring
systems (Maier et al., 2019). By leveraging advanced neural network architectures,
deep learning models extract complex patterns directly from raw data, offering ro-
bust solutions that adapt to the dynamic demands of medical applications. This sec-
tion delves into key deep learning models employed in pose estimation—Convolutional
Neural Networks (CNNs), Graph Convolutional Networks (GCNs), and hybrid ap-
proaches—highlighting their relevance and utility in healthcare settings.

2.4.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNSs) are engineered to process grid-like data,
such as medical images, through a series of convolutional layers that apply filters to
extract spatial hierarchies of features, progressing from rudimentary elements like
edges and textures to sophisticated representations of anatomical or instrumental
forms (LeCun et al., 1998). This automated feature extraction, bolstered by pool-
ing layers that reduce dimensionality and fully connected layers that interpret these
features, empowers CNNs to discern patterns with remarkable efficacy, eliminat-
ing the need for manual feature engineering (Krizhevsky, Sutskever, and Hinton,
2017). In healthcare, CNNs are instrumental in real-time tracking of surgical tools
during laparoscopic and robotic-assisted procedures, ensuring precise control and
minimizing errors by recognizing instruments amidst complex visual scenes (Allan
et al., 2020). Beyond surgery, they excel in medical image analysis, detecting tumors
and lesions in MRI, CT, and X-ray scans to facilitate early diagnosis of conditions like
cancer, while also monitoring patient posture in rehabilitation to assess therapeutic
progress (Litjens et al., 2017). Their strengths lie in high precision, resilience to noise
and occlusions, and the ability to leverage transfer learning from pre-trained mod-
els, mitigating the demand for extensive labeled medical datasets (Pan and Yang,
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2010). However, CNNs require significant computational resources, often necessi-
tating GPUs or TPUs, and can suffer from overfitting on limited data, compounded
by their opaque "black box" nature, which challenges interpretability.

2.4.2 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs) offer a specialized approach to pose estima-
tion by modeling data as graph structures, where nodes represent keypoints—such
as joints, landmarks, or tool tips—and edges delineate their spatial relationships
(Kipf and Welling, 2016). Unlike CNNs, which are constrained to Euclidean grid
data, GCNs extend convolution to non-Euclidean spaces, aggregating information
from neighboring nodes to capture intricate structural patterns and dependencies
(Wu et al.,, 2020). In medical applications, GCNs prove invaluable for analyzing
patient joint movements during rehabilitation, enabling personalized treatment ad-
justments by tracking progress with high fidelity (Yan, Xiong, and Lin, 2018). They
also excel in surgical tool pose estimation, modeling the spatial interplay of instru-
ment components for real-time orientation tracking in minimally invasive proce-
dures (Wang et al., 2019). Additionally, GCNs map neural connectivity in fMRI to
study neurological disorders or analyze vascular networks in cardiovascular imag-
ing, offering insights into disease mechanisms (Parisot et al., 2017). Their advan-
tages include adept handling of irregular data and enhanced interpretability through
graph representations, yet they demand significant computational power and are
sensitive to noisy inputs, with effective graph construction often requiring special-
ized domain knowledge.

2.4.3 Hybrid Deep Learning Models

Hybrid deep learning models integrate multiple neural network architectures to har-
ness their complementary strengths, delivering superior performance in the multi-
faceted challenges of healthcare-related pose estimation (Zhang et al., 2020). These
models typically combine CNNs, which excel at spatial feature extraction from vi-
sual data, with architectures like Recurrent Neural Networks (RNNs) or Transform-
ers to process sequential data and capture temporal dynamics, often incorporating
GCNs to model spatial relationships in non-Euclidean contexts. In surgical settings,
such hybrids enable real-time tool tracking by merging CNN-derived visual features
with RNN-analyzed movement sequences, ensuring dynamic precision in robotic-
assisted procedures. They also support comprehensive patient monitoring in in-
tensive care units, where CNNs process imaging data alongside Transformers in-
terpreting time-series vital signs, facilitating early detection of deterioration. For
multi-modal medical image analysis, integrating GCNs, CNNSs, and Transformers
enhances diagnostic accuracy across diverse imaging types, while in rehabilitation,
these models track patient progress over time, adapting treatment plans accordingly.
Furthermore, hybrid approaches model disease progression by combining GCN-
mapped biological networks with Transformer-analyzed patient histories, paving
the way for personalized medicine through predictive insights (Wang et al., 2019).
These models offer robust predictive power, resilience to noise, and adaptability to
heterogeneous data, supporting real-time analysis in dynamic healthcare environ-
ments, though their complexity increases computational demands and integration
challenges.
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2.5 YOLO Model and Its Applications

The You Only Look Once (YOLO) model represents a groundbreaking advancement
in real-time object detection within computer vision, profoundly influencing a wide
array of applications, including those in healthcare (Redmon et al., 2016). Renowned
for its exceptional speed and accuracy, YOLO's ability to simultaneously detect and
localize multiple objects within a single image has positioned it as an ideal solution
for medical scenarios where swift and precise identification is paramount (Zhao et
al., 2019). By processing visual data in a streamlined manner, YOLO offers a ro-
bust framework that meets the rigorous demands of real-time medical diagnostics
and surgical interventions, establishing its significance across diverse healthcare do-
mains.

2.5.1 Mechanism of YOLO

Distinct from conventional object detection approaches that rely on region proposal
networks or sliding windows, YOLO employs a single forward pass through a con-
volutional neural network to analyze an entire image, enhancing its computational
efficiency (Redmon and Farhadi, 2017). The input image is segmented into an S
x S grid, with each cell tasked with predicting multiple bounding boxes, each ac-
companied by a confidence score that reflects the probability of an object’s pres-
ence within that region. Simultaneously, each grid cell estimates conditional class
probabilities, indicating the likelihood that an object, if present, belongs to a specific
category—such as surgical tools like clippers or irrigators (Redmon and Farhadi,
2018). This unified architecture culminates in rapid detection by thresholding these
confidence scores and applying non-maximum suppression to eliminate redundant
boxes, rendering YOLO exceptionally suited for applications requiring immediate
processing, such as surgical navigation and diagnostics.

2.5.2 Applications in Healthcare

YOLO's remarkable speed and precision have catalyzed its widespread adoption
across various healthcare applications, enhancing both clinical efficiency and pa-
tient outcomes. In the realm of minimally invasive surgeries (MIS), including la-
paroscopic and robotic-assisted procedures, YOLO facilitates real-time detection and
tracking of surgical instruments, bolstering precision and minimizing human error
to improve safety (Schoenthaler, Lassner, and Githmann, 2020). Beyond surgery, its
prowess extends to medical imaging, where it swiftly identifies abnormalities—such
as tumors, cysts, or fractures—across modalities like X-rays, MRI, and CT scans, en-
abling early diagnosis and intervention for critical conditions (Agarwal, Goel, and
Gupta, 2020). In endoscopy, YOLO processes video feeds to detect gastrointestinal
anomalies like polyps or ulcers in real time, augmenting diagnostic accuracy and re-
ducing oversight (Misawa et al., 2018). Additionally, it supports patient monitoring
in intensive care units by recognizing distress signals or unusual movements, and
aids fall detection for vulnerable populations, enhancing care delivery (Ravanelli et
al., 2018). In radiology and pathology, YOLO streamlines workflows by automat-
ing the detection of radiological and histopathological abnormalities, prioritizing
urgent cases and accelerating diagnostic processes (Ciresan, Meier, and Schmidhu-
ber, 2012).
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2.5.3 Advantages of YOLO

YOLOQO's design confers several advantages that align seamlessly with the demands
of real-time medical applications. Its single-pass architecture ensures rapid pro-
cessing, making it an invaluable asset for time-sensitive tasks like surgical assis-
tance and emergency diagnostics. Despite its emphasis on speed, YOLO maintains
competitive accuracy in detecting multiple objects concurrently, ensuring reliable
performance across complex scenes. The end-to-end detection process simplifies
computational workflows, enhancing efficiency compared to multi-stage methods
(Bochkovskiy, Wang, and Liao, 2020). Its versatility allows adaptation to diverse
medical imaging modalities and tasks, while its efficient resource utilization—requiring
fewer computational demands than some advanced models—enables deployment
on edge devices, broadening its practical reach. Furthermore, YOLO's scalability
and customization potential, achievable through fine-tuning on specialized datasets,
make it a flexible tool for tailored healthcare solutions.

2.5.4 Limitations of YOLO

Despite its strengths, YOLO is not without limitations that warrant consideration in
healthcare contexts. It often struggles to detect small objects that occupy minimal
portions of a grid cell, a challenge particularly relevant in medical imaging where
subtle lesions or fine instruments may be overlooked (Redmon and Farhadi, 2018).
Localization errors can also arise, especially in scenarios with overlapping or densely
packed objects, potentially compromising precision in crowded surgical fields. The
model’s reliance on large, annotated datasets for effective training poses a hurdle
in healthcare, where data privacy and annotation costs limit availability, necessi-
tating extensive resources for optimal performance. Generalization issues further
complicate its use, as performance may degrade on datasets diverging significantly
from training conditions, requiring domain-specific adjustments. Additionally, like
many deep learning models, YOLO'’s opaque decision-making process hinders in-
terpretability, presenting challenges for clinical validation and trust in critical appli-
cations (Zhao et al., 2019).
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Chapter 3

Methodology

3.1 YOLOvVS8 Model

Object detection stands as a pivotal domain within computer vision, with its util-
ity spanning numerous applications across various fields. Within this landscape,
the YOLO (You Only Look Once) family of models has emerged as a trailblazer in
real-time object detection, continuously advancing the benchmarks for speed and
accuracy. This section details YOLOVS, the latest iteration released by Ultralytics,
highlighting its architectural innovations, loss function formulation, and its exten-
sion to pose estimation, with a particular focus on its application to surgical tool
tracking in laparoscopic surgery. While a formal peer-reviewed paper specifically
detailing YOLOVS8's internal workings is not yet available (as of the original doc-
ument’s date), we leverage available documentation, code implementations, and
community insights to provide a comprehensive overview.

3.1.1 Architecture Overview

YOLOVS operates as a single-stage detector, processing an input image in a solitary
forward pass to predict bounding boxes and class probabilities, distinguishing it
from two-stage detectors that rely on initial region proposals followed by classifica-
tion. This streamlined approach is fundamental to its real-time performance, mak-
ing it highly suitable for applications demanding rapid processing. The architecture
comprises several key components that collectively enhance its detection prowess.
The backbone, tasked with extracting hierarchical feature representations, adopts a
refined CSPDarknet53-like structure, replacing the C3 modules of YOLOVS5 (Jocher
et al., 2020) with C2f (Cross-Stage Partial Bottleneck with two convolutions) mod-
ules. Inspired by the ELAN concept from YOLOv7 (Wang, Bochkovskiy, and Liao,
2023), the C2f module integrates features from dual convolutional paths before con-
catenating them with an additional path, capturing richer gradient flow while main-
taining computational efficiency, thus bolstering the network’s capacity to discern
intricate patterns. The neck aggregates multi-scale feature maps from the backbone
using a Path Aggregation Network (PAN) structure, akin to that in YOLOv5 and
later iterations. This integrates a top-down Feature Pyramid Network (FPN) path-
way, which propagates semantic details from coarser to finer feature maps, with a
bottom-up pathway that enhances localization precision from lower to higher lev-
els, a fusion critical for detecting objects of varying sizes. Notably, YOLOVS elim-
inates convolutional operations in the upsampling phase of the neck, simplifying
the process compared to some predecessors. The head employs a decoupled design,
separating classification and regression tasks into distinct branches, predicting class
probabilities and bounding box coordinates independently to optimize task-specific
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learning. A significant shift in YOLOVS is its anchor-free approach, eschewing pre-
defined anchor boxes in favor of directly predicting offsets from grid cell centers
to bounding box corners, reducing prediction complexity and accelerating Non-
Maximum Suppression (NMS). These components are visually represented in Figure
3.1, which illustrates both the overall and detailed network structures of YOLOVS.
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FIGURE 3.1: Architectural representations of the YOLOv8 model,
showcasing its overall structure (a) and detailed component break-
down (b).

3.1.2 Loss Functions

The training of YOLOVS is guided by a sophisticated multi-component loss function
that harmonizes classification and regression objectives to refine detection accuracy.
For the classification branch, Binary Cross-Entropy (BCE) Loss is utilized, measur-
ing the divergence between predicted probabilities and ground truth labels for each
class across predicted boxes. This is expressed as:

Lossas = —[yn -log(xn) + (1 — y,) - log(1 — x,)] (3.1)

where y,, denotes the ground truth label (0 or 1), and x,, represents the predicted
probability, ensuring precise class assignments. The regression branch combines
Complete Intersection over Union (CloU) Loss and Distribution Focal Loss (DFL)
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to optimize bounding box predictions. CloU Loss extends traditional IoU by incor-
porating the distance between box centers and aspect ratio consistency, formulated
as:

2 gt
CIoU Loss =1 —IoU + P(lzizb) + av (3.2)

Here, IoU is the overlap ratio, p?(b, b$") is the squared Euclidean distance be-
tween the predicted (b) and ground truth (b8") box centers, ¢ is the diagonal of the
smallest enclosing box, « is a trade-off parameter, and v accounts for aspect ratio
alignment, enhancing bounding box stability and accuracy. DFL complements this
by focusing on the probability distribution around target locations, encouraging pre-
cise localization, and is defined as:

DFL(S;, Sit1) = —((yi+1 — y) -10g(Si) + (y — yi) -10g(Sit1)) (3.3)

where y is the target label converted to bounds y; and y;1, and S; is the predicted
probability at y;, applied alongside CIoU for refined regression. Task alignment dur-
ing training is facilitated by the Task Aligned Assigner, dynamically weighting sam-
ples based on classification (s) and IoU (u) scores:

t=s%uf (3.4)

with & and B as weighting factors, aligning confidence with localization accuracy
for optimal performance.

3.1.3 YOLOvVS8-Pose: Extending to Surgical Tool Pose Estimation

YOLOV8-Pose extends the core YOLOvS8 framework to encompass pose estimation,
adapting its architecture to precisely localize keypoints on surgical instruments in
laparoscopic surgery, such as the tips and joints of clippers, scissors, and irrigators,
beyond mere bounding box prediction. This extension introduces an additional key-
point head, structurally parallel to the regression head but tailored to output coor-
dinate sets for critical points on each tool, enabling detailed spatial mapping of their
functional components. During training, this head employs a keypoint-specific loss
function, typically a variant of mean squared error (MSE) or smooth L1 loss, to mea-
sure the discrepancy between predicted and ground truth keypoint locations, ensur-
ing high precision in capturing the orientation and articulation of instruments like
an irrigator’s nozzle or a scissor’s cutting edge. For each detected tool, the output in-
cludes a bounding box defined by coordinates (x, y, width, height), a class label (e.g.,
"clipper"), and a sequence of keypoint coordinates (x1, y1,v1, X2, Y2, 02, - . ., Xk, Yk, Uk),
where (x;,y;) specifies the position of the i-th keypoint—such as a joint pivot—and
v; indicates its visibility (0 for occluded, 1 for visible), providing a comprehensive
depiction of both tool detection and pose. This real-time capability is paramount
in laparoscopic surgery, where tracking the precise movement and orientation of
instruments enhances procedural accuracy and safety.

The YOLOVS8-Pose model’s application to surgical tool pose estimation lever-
ages its inherent speed, maintaining the low-latency hallmark of the YOLO lineage,
critical for intraoperative tool tracking where delays could compromise surgical ef-
ficacy. Its architectural enhancements, including the C2f module and decoupled
head, combined with refined loss functions, elevate accuracy, ensuring reliable de-
tection and keypoint localization of tools amidst the dynamic, often occluded la-
paroscopic environment. The anchor-free design and scalable variants (nano, small,
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medium, large, extra-large) offer deployment flexibility across hardware platforms,
from edge devices in operating rooms to high-performance systems, while its exten-
sibility—demonstrated by its adaptation to surgical tool pose estimation—suggests
potential for further customization in specialized medical detection tasks. Ultralyt-
ics” well-documented command-line interface and Python package further facilitate
its practical implementation, enabling seamless integration into surgical workflows.
This synthesis of architectural ingenuity and pose estimation capability positions
YOLOv8-Pose as a transformative tool, adept at addressing the intricate demands of
real-time surgical instrument tracking in laparoscopic procedures, enhancing both
precision and operational efficiency in clinical practice.

3.2 Collecting Datasets

3.2.1 Surgical Instrument Dataset

This study leverages a meticulously curated dataset comprising surgical instrument
images derived from the m2cail6é-tool-locations dataset, a comprehensive collection
of images captured during laparoscopic surgeries under real-world operative condi-
tions (Kim et al., 2024). These images encapsulate a diverse array of surgical instru-
ments, offering a realistic and representative foundation for training the YOLOVS-
pose model. To ensure the dataset’s suitability for high-quality training, a series of
preprocessing steps were meticulously executed, encompassing careful image selec-
tion, strategic dataset expansion, and robust augmentation techniques to enhance
diversity and model robustness.

The initial refinement of the dataset involved a selective filtration process, wherein
images featuring clippers, irrigators, and scissors were meticulously extracted from
the original m2cail6-tool-locations collection. This curation prioritized frames where
surgical instruments were clearly visible, a critical step to optimize annotation accu-
racy and bolster the model’s capability to effectively detect and track these tools in
practical settings. Recognizing the inherent limitation of the original dataset’s re-
stricted image count per instrument category, additional images were sourced from
analogous laparoscopic surgery datasets to expand the dataset’s scope. This expan-
sion enriched the variety of tool appearances, ensuring a more balanced representa-
tion across categories and enhancing the model’s generalization to diverse surgical
scenarios. To further augment dataset diversity and resilience against real-world
variations—such as changes in lighting, angles, and occlusions—data augmentation
techniques were applied, including random flipping, brightness adjustments, and
exposure modifications, enabling the model to adapt to a broad spectrum of visual
conditions encountered during surgery.

The finalized dataset is organized into three primary categories of surgical in-
struments, each integral to laparoscopic procedures. Clippers, vital for clamping
and cutting tissues or blood vessels, play an essential role in maintaining surgical
precision. Irrigators, designed to rinse and cleanse the surgical field with sterile flu-
ids, ensure optimal visibility and hygiene throughout operations. Scissors, widely
employed for cutting tissues and sutures, represent one of the most ubiquitous tools
in minimally invasive surgery. Through this curation and expansion process, the
dataset provides a high-quality, diverse, and well-annotated corpus of surgical in-
strument images, enabling the YOLOv8-pose model to achieve precise detection and
tracking in authentic surgical environments.
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3.2.2 Data Labeling and Preprocessing

The preparation of the dataset for the YOLOvV8-pose model hinges on a rigorous
data labeling and preprocessing pipeline, a cornerstone of ensuring high accuracy in
detecting and estimating the pose of surgical instruments. This process was metic-
ulously conducted using the Computer Vision Annotation Tool (CVAT), a robust
platform widely recognized for its precision in annotating objects within medical
imaging datasets (Kim et al., 2024). By employing CVAT, the labeling pipeline guar-
antees that the training data consists of high-quality, accurately annotated images,
significantly enhancing the model’s performance in real-world laparoscopic surgery
contexts.
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FIGURE 3.2: Position and sequence of keypoints on the instrument
tool

The labeling process is exemplified in Figure 3.2, which showcases the annota-
tion of endoscopic video frames for three surgical tools: clippers, scissors, and irri-
gators. For clippers, annotations include keypoints such as the left joint head, body
joints, and additional points along the tool’s body, complemented by a bounding box
to facilitate precise positional tracking throughout procedures. Similarly, scissors are
annotated with keypoints like the left joint head and body joint points, paired with
a bounding box to ensure accurate real-time recognition. Irrigators follow suit, with
keypoints marked and enclosed within a bounding box, enabling consistent identifi-
cation and tracking during surgical operations. Following annotation, a thorough re-
view and validation phase was undertaken to eliminate images with errors, unclear
annotations, or inconsistencies, maintaining the dataset’s integrity and preventing
potential degradation of the model’s learning efficacy.

To optimize dataset quality and uniformity, preprocessing techniques were ap-
plied prior to model training. All images were normalized to a resolution of 640x640
pixels, aligning with the YOLOv8 model’s input specifications to ensure consis-
tency during training and inference phases. Data augmentation further enriched
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the dataset, incorporating horizontal and vertical flipping to simulate varied instru-
ment orientations, brightness adjustments ranging from -25% to +25% to mimic di-
verse lighting conditions, and exposure modifications between -15% and +15% to
address illumination variability common in surgical environments. Gaussian noise
was introduced to emulate visual artifacts, enhancing the model’s resilience to cam-
era distortions and environmental noise. A subsequent data cleaning step removed
blurry or excessively noisy images and corrected instances of overlapping or du-
plicated instruments, safeguarding annotation accuracy and mitigating confusion
during training.

The processed dataset was subsequently partitioned into three subsets—training,
validation, and test sets—to support a robust training and evaluation framework.
This distribution is detailed in Table 3.1, which outlines the allocation for each in-
strument category: clippers, irrigators, and scissors, each comprising 900 training
images, 100 validation images, and 300 test images. This structured split ensures
that the model is trained on a substantial and diverse corpus, validated against an
independent subset to monitor performance, and evaluated on unseen data to assess
generalization in real-world applications.

TABLE 3.1: Dataset Split for Training, Validation, and Testing

Instrument Category | Training Images | Validation Images | Test Images
Clipper 900 100 300
Irrigator 900 100 300
Scissors 900 100 300

This comprehensive data labeling and preprocessing pipeline underpins the op-
timization of input quality for the YOLOvV8-pose model. Through precise manual
annotation with CVAT, standardized image resizing, strategic augmentation, and
rigorous quality control, the dataset delivers a high-fidelity training foundation, em-
powering the model to achieve accurate detection and pose estimation of surgical
instruments in real-world laparoscopic surgery scenarios.

3.3 Model Setup and Training

3.3.1 Hyperparameter Configuration

The training of the YOLOv8-pose model in this study was meticulously config-
ured to optimize performance while preserving computational efficiency, achieved
through a judicious selection of hyperparameters tailored to balance accuracy, sta-
bility, and generalization. This configuration enabled the model to effectively learn
from the training dataset without succumbing to overfitting, ensuring robust appli-
cability in real-world surgical scenarios. The training process spanned 100 epochs,
allowing the model to iterate through the dataset comprehensively to discern rel-
evant patterns and refine detection accuracy. To safeguard against overfitting and
minimize computational overhead, an early stopping mechanism was implemented,
halting training if validation performance ceased to improve after 50 consecutive
epochs.

A batch size of 16 was adopted to strike an equilibrium between memory utiliza-
tion and training efficiency, processing an adequate number of images per iteration
without overburdening system resources. All images were standardized to a resolu-
tion of 640x640 pixels, ensuring uniform input dimensions across the dataset, while
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eight parallel data workers were deployed to streamline data loading and expedite
the training workflow. A sophisticated learning rate schedule governed the training
progression, initiating with a learning rate of 0.01 to permit significant weight adjust-
ments early on, followed by a gradual decay to fine-tune weights without exceeding
optimal values. Momentum was set at 0.937 to enhance Stochastic Gradient Descent
(SGD), leveraging previous gradient updates to smooth the learning trajectory and
bolster convergence stability. To further curb overfitting and promote generaliza-
tion, a weight decay of 0.0005 was applied as a regularization strategy, penalizing
excessively large weights, while gradient clipping constrained gradient magnitudes
to maintain training stability.

The model’s adaptability and robustness were augmented through a suite of data
augmentation strategies integrated into the training process. Mosaic augmentation
fused multiple images into a composite training sample, exposing the model to var-
ied spatial contexts and enhancing its detection of smaller objects. MixUp augmen-
tation blended images to generate synthetic samples, broadening the model’s gen-
eralization across diverse scenarios. Color jittering introduced random variations
in brightness, contrast, and saturation, equipping the model to handle fluctuating
lighting conditions prevalent in surgical environments. Random scaling and crop-
ping further diversified the training data by presenting objects at different sizes and
viewpoints, improving detection flexibility. Additionally, Gaussian noise was in-
jected into the images to simulate real-world artifacts like motion blur and occlu-
sions, fortifying the model’s resilience to imaging distortions. These hyperparame-
ters and augmentation techniques, detailed in Table 3.2, collectively optimized the
YOLOv8-pose model for accurate and efficient surgical instrument detection, ensur-
ing high performance in real-time laparoscopic applications across varied surgical
conditions.

TABLE 3.2: Hyperparameter Configuration and Augmentation
Strategies for YOLOvS8-pose Training

Parameter Value/Description

Epochs 100

Early Stopping Patience 50 epochs

Batch Size 16

Image Resolution 640x640 pixels

Data Workers 8

Initial Learning Rate 0.01

Learning Rate Decay Gradual reduction

Momentum 0.937

Weight Decay 0.0005

Gradient Clipping Applied to limit gradient magnitude
Augmentation Strategies

Mosaic Augmentation Combines multiple images into one sample

MixUp Augmentation Blends images for synthetic samples

Color Jittering Random brightness, contrast, saturation shifts

Random Scaling and Cropping | Varies object sizes and viewpoints

Gaussian Noise Simulates imaging artifacts
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3.3.2 Optimization Strategy and Loss Function

The optimization strategy and loss function selection form the bedrock of achieving
superior performance with the YOLOv8-pose model, pivotal in accelerating con-
vergence, mitigating overfitting, and refining prediction accuracy for surgical tool
detection and pose estimation. These elements were carefully calibrated to fine-tune
the training process, maximizing both efficiency and precision tailored to real-world
surgical demands. Several optimization algorithms were evaluated to identify the
most effective approach, each influencing the model’s learning speed, generaliza-
tion, and computational efficiency.

Stochastic Gradient Descent (SGD) emerged as a cornerstone optimization method,
iteratively adjusting weights based on gradient updates to drive efficient conver-
gence. Renowned for its strong generalization properties, SGD proves particularly
adept for applications like surgical instrument tracking, smoothing the learning pro-
cess through momentum integration to prevent oscillations and enhance stability.
Alternatively, Adam (Adaptive Moment Estimation) leverages adaptive learning
rates across parameters, offering resilience against noisy gradients and non-stationary
conditions, which accelerates convergence on complex datasets while preserving
high accuracy compared to standard SGD. For datasets exhibiting high variabil-
ity, SGD with Warm Restarts introduces cyclic learning rates, enabling the model
to escape local minima and adapt to diverse endoscopic image conditions—such as
shifting lighting, occlusions, and camera angles—yielding superior generalization.

The model’s training is guided by a suite of loss functions meticulously designed
to minimize errors across its dual objectives of object detection and pose estimation.
Distributional Focal Loss (DFL) stands as a key component, enhancing both bound-
ing box and keypoint predictions by employing distribution-based calculations to
refine precision. This approach reduces parameter complexity, improving efficiency
in detecting challenging surgical instruments, and assigns greater weight to diffi-
cult examples, ensuring robust performance in occluded or cluttered environments
where tools may overlap or be partially obscured. Complementing DFL, Complete
IoU Loss (CIoU Loss) refines bounding box regression by incorporating shape align-
ment and distance metrics, ensuring predicted boxes closely align with ground truth,
while aspect ratio penalties maintain proportional accuracy, particularly crucial for
pose estimation tasks. Together, these optimization strategies and loss functions
synergistically elevate the YOLOv8-pose model’s capability to deliver precise and
reliable outcomes in surgical applications.

3.4 Model Performance Evaluation

The evaluation of the YOLOv8-pose model’s effectiveness in surgical instrument
pose estimation hinges on a suite of performance metrics tailored to assess its dual
capabilities: accurately detecting surgical tools and precisely estimating their key-
point locations. These metrics provide a comprehensive measure of the model’s pro-
ficiency in identifying instruments such as clippers, irrigators, and scissors within
laparoscopic video frames, while also ensuring that the spatial orientation and crit-
ical points of these tools are correctly localized, a task vital for real-time surgical
applications where precision directly impacts procedural outcomes.

A cornerstone metric employed is the Intersection over Union (IoU), which quan-
tifies the overlap between the predicted bounding box D and the ground truth box G
surrounding a surgical instrument. This is calculated as the ratio of the intersection
area to the union area of these boxes, expressed mathematically as:
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A higher IoU value signifies greater alignment between the predicted and ac-
tual bounding boxes, reflecting superior detection accuracy essential for ensuring
that the model reliably delineates the spatial extent of surgical tools amidst complex
operative backgrounds.

Precision (P) serves as a key indicator of the model’s ability to accurately classify
detected regions as surgical instruments, calculated as the proportion of true pos-
itives (TP), representing correctly identified tools, to the total detections including
false positives (FP), or incorrectly identified regions. This is formulated as:

IoU =

(3.5)

TP
TP+ FP

In the context of surgical tool detection, true positives denote instances where
the model correctly identifies an instrument like a clipper, while false positives in-
dicate erroneous detections, such as mistaking background elements for tools. High
precision underscores the model’s effectiveness in distinguishing instruments from
non-instrument regions, minimizing false alarms that could disrupt surgical work-
flows.

Recall (R), conversely, measures the model’s capacity to detect all actual surgical
instruments present in the dataset, defined as the ratio of true positives to the sum
of true positives and false negatives (FN), where false negatives represent missed
instruments. This is expressed as:

p= (3.6)

TP
R= TP+ FN

A robust recall score ensures that the model captures the majority of surgical
tools in laparoscopic frames, reducing the risk of overlooking critical instruments
during procedures, thereby enhancing reliability in tracking all relevant tools within
the operative field.

The Mean Average Precision (mAP) provides a holistic assessment of detection
performance across varying IoU thresholds. At an IoU threshold of 0.5 (mAP@0.5),
the metric evaluates detection with moderate overlap, suitable for confirming the
presence of surgical tools with reasonable accuracy. For a more stringent evaluation,
mAP@0.5:0.95 computes the average precision across IoU thresholds from 0.5 to 0.95,
reflecting robust performance across a spectrum of overlap stringencies. Average
Precision (AP) is determined by summing precision values weighted by incremental
recall changes:

(3.7)

AP = 2 P(i)AR(i) (3.8)
i=1

The mAP is then derived as the mean of AP across all K instrument classes (e.g.,
clipper, irrigator, scissors):

1 K
AP =—-) AP .
m I 1; . (3.9)

This metric ensures that the model consistently detects all surgical tool categories
with high fidelity, a critical factor in multi-tool laparoscopic environments.
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For pose estimation, the study adopts Object Keypoint Similarity (L), a metric
tailored to assess the accuracy of keypoint localization on surgical instruments. This
is calculated as the ratio of a weighted sum of exponential distance terms—reflecting
the proximity of predicted keypoints to their ground truth locations—to the count
of visible keypoints, formulated as:

Y [exp (%) 0(v; > 0)]
i 0(vi > 0)

Here, i denotes the keypoint index, d? is the squared Euclidean distance between
the predicted and true keypoint positions (e.g., the tip or joint of a scissor), 52 repre-
sents the instrument’s bounding box area, k; is a decay constant modulating sensitiv-
ity per keypoint type, 0 is an impulse function activating only for visible keypoints
(v; > 0), and v; indicates keypoint visibility. A higher L, value signifies precise key-
point alignment, crucial for mapping the orientation and functional parts of surgical
tools.

Keypoint-specific Precision (Py,;) and Recall (R,;) extend these concepts to eval-
uate localization accuracy, defined respectively as the ratio of correctly located key-
points (TP,;) to total predicted keypoints including false positives (FP), and to
total ground truth keypoints including false negatives (FN;):

Loks = (3.10)

TPy

Py = m—575— 3.11

¥ TPy + FP -
T Py

Ript = s 3.12

kpt Tpkpt +FNkpt ( )

The Average Precision for keypoints (AP,;) integrates precision over recall:

1
APy = /0 Py dRp (3.13)

The mean Average Precision for keypoints (mAPy;) is then computed as the av-
erage across N keypoint types:

N, AP
N
In surgical tool pose estimation, TPy, FPyyt, and FNgp; reflect the accuracy of
keypoint localization—such as correctly identifying the tip of an irrigator versus
missing a joint on a clipper—ensuring that the model’s spatial predictions align with
the intricate requirements of operative precision. Together, these metrics provide a
rigorous framework to evaluate the YOLOv8-pose model’s performance in detect-
ing and localizing surgical instruments, critical for enhancing safety and efficacy in
laparoscopic surgery.

mAPyy = (3.14)
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Chapter 4

Results and Discussions

4.1 Model Training Results

4.1.1 Training Configuration and Process

The YOLOv8-pose model was trained and evaluated on Google Colab, leveraging
a meticulously curated dataset of annotated surgical instrument images to optimize
its performance for real-time surgical applications. Through a series of rigorous ex-
periments, the training configuration was fine-tuned to strike an optimal balance
between computational efficiency and detection accuracy, ensuring the model’s suit-
ability for practical deployment in laparoscopic surgery. The training spanned 100
epochs, allowing the model to comprehensively traverse the dataset and extract
meaningful patterns pertinent to surgical tools such as clippers, irrigators, and scis-
sors. To mitigate the risk of overfitting and conserve computational resources, an
early stopping mechanism was employed, terminating training if validation perfor-
mance ceased to improve after 50 consecutive epochs. A batch size of 16 was selected
to harmonize memory usage with training stability, processing an adequate volume
of images per iteration without overburdening system resources, while all images
were uniformly resized to a resolution of 640x640 pixels to ensure consistent feature
extraction across the dataset.

Efficiency in data handling was further enhanced by deploying eight parallel
workers, accelerating preprocessing and loading tasks to streamline the training
workflow. The Stochastic Gradient Descent (SGD) optimizer was utilized with an
initial learning rate of 0.01, enabling robust weight adjustments during the early
phases of training, complemented by a momentum parameter of 0.937 to smooth
gradient updates and enhance convergence stability. To bolster generalization and
curb overfitting, a weight decay of 0.0005 was applied, subtly penalizing excessive
reliance on specific dataset patterns. Throughout the 100-epoch training duration,
the training loss exhibited a steady decline, reflecting the model’s effective assimila-
tion of intricate instrument features, while the validation loss remained stable with
minimal fluctuations, underscoring a strong generalization capability to accurately
detect and track surgical tools on unseen data. This optimized configuration not only
yielded real-time inference speeds—crucial for integration into robotic-assisted sys-
tems and Al-guided minimally invasive surgery—but also positioned the YOLOv8-
pose model as a reliable tool for precise pose estimation in dynamic surgical envi-
ronments.
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4.1.2 Performance Across YOLOvVS Variants

The performance of various YOLOvS8-pose model variants was systematically as-
sessed for the detection and pose estimation of surgical instruments—namely clip-
pers, irrigators, and scissors—using a suite of standard metrics including Preci-
sion (P), Recall (R), and mean Average Precision (mAP) at IoU thresholds of 0.5
(mAP@0.5) and 0.5:0.95 (mAP@0.5:0.95). These results, derived from training on
the annotated dataset, are presented in Tables 4.1 through 4.6, offering a detailed
comparison across model sizes ranging from the lightweight YOLOv8n (3.0M pa-
rameters) to the more computationally intensive YOLOVSI (43.6M parameters).

For clipper detection, the YOLOv8n variant, despite its minimal parameter count
of 3.0 million, achieved the highest mAP@0.5 of 99.2%, surpassing larger models,
alongside a competitive mAP@0.5:0.95 of 64.6%, as shown in Table 4.1. This indi-
cates exceptional accuracy in identifying clipper tools within laparoscopic frames,
complemented by a precision of 0.979 and recall of 0.96, suggesting robust detection
with minimal false positives or negatives. In contrast, the YOLOvVS8s variant (11.1M
parameters) recorded a slightly higher mAP@0.5:0.95 of 65.2%, while the YOLOv8m
(25.8M parameters) excelled in recall at 0.97, adeptly capturing nearly all clipper in-
stances, though its mAP@0.5:0.95 of 65.0% trailed YOLOv8s marginally. For clipper
pose estimation, detailed in Table 4.2, YOLOv8n again led with an mAP@0.5:0.95 of
88.7%, reflecting superior keypoint localization accuracy, supported by a precision
of 0.91 and recall of 0.93, while YOLOVS8s achieved the highest recall of 0.949, indi-
cating its strength in identifying a broader range of keypoints, albeit with a slightly
lower mAP@0.5:0.95 of 87.0%.

TABLE 4.1: Performance Metrics for Clipper Detection Across
YOLOvS8-Pose Variants

Model Params (M) Precision  Recall mAP@0.5 mAP@0.5:0.95
YOLOvS8n 3.0 0.979 0.960 0.992 0.646
YOLOv8s 11.1 0.962 0.969 0.991 0.652
YOLOv8m 25.8 0.968 0.970 0.982 0.650
YOLOvSI 43.6 0.980 0.960 0.981 0.645

TABLE 4.2: Performance Metrics for Clipper Pose Estimation Across
YOLOvVS8-Pose Variants

Model Params (M) Precision  Recall mAP@0.5 mAP@0.5:0.95
YOLOv8n 3.0 0.910 0.930 0.979 0.887
YOLOvS8s 11.1 0.950 0.949 0.975 0.870
YOLOv8m 25.8 0.977 0.930 0.981 0.862
YOLOvSI 43.6 0.959 0.920 0.963 0.852

The irrigator detection results, presented in Table 4.3, reveal that YOLOv8n achieved
a high mAP@0.5 of 98.0% with a precision of 0.963 and recall of 0.944, while YOLOv8m
topped recall at 0.972, ensuring comprehensive detection of irrigator instances, though
its mAP@0.5:0.95 of 65.0% matched closely with other variants. In pose estimation
for irrigators, as shown in Table 4.4, YOLOvS8n secured an mAP@0.5 of 99.2% and a
notable mAP@0.5:0.95 of 64.6%, with YOLOvS8I slightly outperforming in mAP@0.5:0.95
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at 68.0%, reflecting its strength in precise keypoint localization despite higher com-
putational demands.

TABLE 4.3: Performance Metrics for Irrigator Detection Across
YOLOv8-Pose Variants

Model Params (M) Precision @ Recall mAP@0.5 mAP@0.5:0.95
YOLOv8n 3.0 0.963 0.944 0.980 0.646
YOLOvS8s 11.1 0.954 0.973 0.963 0.652
YOLOv8m 25.8 0.967 0.972 0.943 0.650
YOLOvSI 43.6 0.966 0.966 0.981 0.645

TABLE 4.4: Performance Metrics for Irrigator Pose Estimation Across
YOLOv8-Pose Variants

Model Params (M) Precision Recall mAP@0.5 mAP@0.5:0.95
YOLOv8n 3.0 0.959 0.960 0.992 0.646
YOLOvVS8s 11.1 0.942 0.969 0.991 0.652
YOLOv8m 25.8 0.948 0.970 0.982 0.670
YOLOvSI 43.6 0.938 0.960 0.973 0.680

For scissors detection, detailed in Table 4.5, YOLOv8n again led with an mAP@0.5
of 99.2%, paired with a precision of 0.979 and recall of 0.96, while YOLOv8m achieved
the highest recall of 0.97, excelling in capturing all scissors instances. In scissors pose
estimation, shown in Table 4.6, YOLOVSI recorded the highest precision of 0.96 and
an mAP@0.5 of 96.1

TABLE 4.5: Performance Metrics for Scissors Detection Across
YOLOvV8-Pose Variants

Model Params (M) Precision Recall mAP@0.5 mAP@0.5:0.95
YOLOvV8n 3.0 0.979 0.960 0.992 0.649
YOLOvS8s 11.1 0.962 0.969 0.991 0.642
YOLOv8m 25.8 0.968 0.970 0.982 0.643
YOLOvSI 43.6 0.980 0.960 0.981 0.622

TABLE 4.6: Performance Metrics for Scissors Pose Estimation Across
YOLOvV8-Pose Variants

Model Params (M) Precision Recall mAP@0.5 mAP@0.5:0.95
YOLOvVS8n 3.0 0.949 0.920 0.972 0.666
YOLOvS8s 11.1 0.922 0.950 0.951 0.642
YOLOv8m 25.8 0.938 0.920 0.952 0.655

YOLOvSI 43.6 0.960 0.930 0.961 0.645
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4.1.3 Discussion of Results

The training results across the clipper, irrigator, and scissors datasets reveal con-
sistent performance trends among the YOLOvVS8-pose variants, with the lightweight
YOLOv8n model demonstrating remarkable efficiency and accuracy, often rivaling
or surpassing its larger counterparts despite its modest 3.0 million parameters. This
trend is particularly evident in clipper detection, where YOLOv8n’s mAP@0.5 of
99.2% and mAP@0.5:0.95 of 64.6% highlight its ability to precisely identify clippers,
complemented by its standout pose estimation performance with an mAP@0.5:0.95
of 88.7%, indicating superior keypoint localization for tracking tool orientation and
articulation. Similar patterns emerge in irrigator and scissors datasets, where YOLOv8n
achieves high mAP@0.5 scores (98.0% and 99.2%, respectively), underscoring its ca-
pability to detect these instruments effectively, while its pose estimation metrics
remain competitive, particularly for irrigators with an mAP@0.5 of 99.2%. Larger
models like YOLOv8m and YOLOVSI occasionally excel in recall (e.g., 0.972 for irri-
gator detection by YOLOvV8m) or precision (e.g., 0.96 for scissors pose by YOLOVS]I),
reflecting their strength in capturing comprehensive instances or refining keypoint
predictions, albeit at the cost of increased computational demands.

These results affirm YOLOvS8n as an exceptionally efficient choice for real-time
surgical tool detection and pose estimation in laparoscopic procedures, balancing ac-
curacy with minimal resource requirements. Its ability to maintain high mAP scores
across all three tool categories demonstrates robust generalization, effectively track-
ing changes in tool direction or posture—such as the angle of a scissor’s blades or
the position of a clipper’s tip—critical for ensuring surgical precision and safety. The
competitive performance of larger variants suggests potential trade-offs for scenar-
ios demanding exhaustive detection or enhanced keypoint accuracy, yet YOLOv8n's
lightweight design and real-time inference speed position it as an ideal candidate
for integration into robotic-assisted systems and Al-guided surgical tools, offering
a transformative solution for minimally invasive surgery applications where effi-
ciency and precision are paramount.

4.2 Qualitative Results

4.2.1 Detection and Pose Estimation Outcomes

This section presents a qualitative evaluation of the YOLOv8n-pose model’s perfor-
mance, based on its application to real-world laparoscopic images featuring surgi-
cal instruments such as clippers, irrigators, and scissors. The results, derived from
testing the trained model on endoscopic video frames, showcase its capability to
accurately detect these tools and estimate their poses, a critical functionality for en-
hancing precision in minimally invasive surgery. Figure 4.1 illustrates the model’s
effectiveness across three representative instruments, highlighting its ability to iden-
tify tool positions and keypoint locations in authentic operative conditions. For the
clipper, depicted in Figure 4.1a, the model precisely delineates the bounding box and
pinpoints keypoints such as the tool’s tip and joints, demonstrating robust detection
amidst the cluttered laparoscopic environment. Similarly, the irrigator, shown in
Figure 4.1b, is accurately detected with its key joint points mapped, underscoring
the model’s proficiency in tracking tools essential for maintaining surgical field vis-
ibility. The scissors, illustrated in Figure 4.1c, exhibit precise recognition of position
and pose, with keypoints like the blade tips and pivot accurately identified, facilitat-
ing real-time navigation and cutting actions during procedures.
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(C) Scissors detection and pose estimation

FIGURE 4.1: Detection and pose estimation results of surgical instru-
ments using the YOLOv8n-pose model in real-world laparoscopic im-
ages: (a) Clipper, (b) Irrigator, (c) Scissors.
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These qualitative outcomes affirm the model’s effectiveness in real-time surgical
settings, where rapid and accurate identification of instrument positions and orien-
tations is paramount. The ability to track movements—such as the clipper’s clamp-
ing action or the scissors’ cutting trajectory—enhances surgical precision, support-
ing seamless integration into robotic-assisted systems and Al-driven guidance tech-
nologies. To further illustrate this capability, demonstration videos were recorded
and shared on YouTube, visually capturing the detection and pose estimation pro-
cesses for clippers ([Clipper]), irrigators ([Irrigator]), and scissors ([Scissors]). These
videos provide tangible evidence of the model’s performance under real-world con-
ditions, showcasing its potential to transform intraoperative tool tracking.

4.2.2 Pose Estimation with Keypoint Connection

Building upon the detection results, the application of the YOLOv8n-pose model
was extended by implementing a keypoint connection method to estimate the pose
of surgical instruments and analyze their movement trajectories, a crucial enhance-
ment for laparoscopic surgery. This approach connects detected keypoints—such as
the tip and joints of a clipper or the pivot of scissors—to form a structured represen-
tation of each tool’s pose, enabling precise tracking of positional and orientational
changes during procedures.

(C) Scissors pose estimation

FIGURE 4.2: Pose estimation of surgical instruments using keypoint
connection in endoscopic videos: (a) Clipper, (b) Irrigator, (c) Scissors.

Figure 4.2 exemplifies this method across the three primary instruments. For the
clipper, shown in Figure 4.2a, keypoints are linked to delineate its clamping struc-
ture, facilitating accurate pose estimation critical for tissue manipulation. The ir-
rigator, depicted in Figure 4.2b, reveals connected keypoints outlining its rinsing


https://youtu.be/JXAHjJg6itw
https://youtu.be/kdS9AErKJtw
https://youtu.be/PkrUpCGyGN4
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mechanism, ensuring optimal field visibility tracking. Similarly, the scissors in Fig-
ure 4.2¢ display a connected keypoint framework that maps its cutting orientation,
vital for precise surgical incisions.

This keypoint-based pose estimation enhances the model’s utility by providing a
detailed spatial understanding of instrument dynamics, supporting real-time moni-
toring and automation in robot-assisted surgeries. By mapping the pose of tools like
the irrigator’s nozzle or scissor’s blades, the system improves manipulation accu-
racy, offering potential applications in surgical skill assessment, training, and aug-
mented reality navigation, where precise feedback optimizes procedural outcomes.

4.2.3 Trajectory Tracking and Movement Analysis

The qualitative evaluation was further advanced by tracking the movement trajec-
tories of surgical instruments using the keypoint-based pose estimation results, a
capability illustrated in Figure 4.3. This figure visualizes the motion paths of clip-
pers, irrigators, and scissors within endoscopic videos, with green lines representing
trajectories derived from connected keypoints over time. For the clipper, shown in
Figure 4.3a, the trajectory traces its clamping movements, critical for precise tissue
handling. The irrigator, depicted in Figure 4.3b, tracks its rinsing path, ensuring
consistent field clearance, while the scissors in Figure 4.3c reveal cutting trajectories,
essential for accurate incisions.

(A) Clipper (B) Scissors

(C) Irrigator

FIGURE 4.3: Tracking the Trajectory of Surgical Instruments Using
Keypoint-Based Pose Estimation in Endoscopic Videos

This trajectory tracking enhances surgical precision by enabling real-time mon-
itoring of instrument movements within the operative space, supporting applica-
tions such as robot-assisted surgery, skill assessment, and post-operative analysis for
workflow optimization. The visualized motion paths allow intelligent surgical sys-
tems to detect and correct deviations—such as an errant scissor cut—improving pa-
tient safety. Additionally, integration into surgical training platforms offers trainees
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detailed insights into instrument usage, facilitating skill enhancement through tra-
jectory analysis of real-world scenarios, thus amplifying the model’s transformative
impact in laparoscopic surgery.

4.3 Comparison with Other Methods

4.3.1 Overview of Comparative Analysis

The domain of surgical instrument detection and pose estimation has seen the devel-
opment of numerous deep learning models aimed at enhancing accuracy and perfor-
mance in real-world operative scenarios. For effective deployment in smart surgical
systems, a model must strike an optimal balance between processing speed, detec-
tion accuracy, and computational efficiency—attributes critical for real-time applica-
tions such as laparoscopic surgery. This section presents a comparative analysis of
the YOLOvS8-Pose model against other prominent frameworks, including YOLOv5-
Pose, HRNet, and OpenPose, to evaluate its efficacy in these dimensions. The com-
parison focuses on their performance in detecting surgical tools like clippers, irriga-
tors, and scissors, as well as estimating their keypoint locations, assessing not only
precision but also practical applicability in medical imaging and robotic-assisted in-
terventions.

4.3.2 Description of Compared Models

The evaluation encompasses a selection of state-of-the-art models, each represent-
ing distinct approaches to object detection and pose estimation tailored to surgical
contexts. YOLOvV5-Pose, an earlier iteration within the YOLO family, serves as a
benchmark, offering robust real-time performance in detecting surgical instruments
and estimating their poses. While effective, it lacks some of the advanced archi-
tectural refinements present in YOLOVS-Pose, particularly in feature extraction effi-
ciency and keypoint localization precision, which are pivotal for tracking complex
tool movements in laparoscopic procedures. HRNet (High-Resolution Network),
another contender, excels in high-precision keypoint detection, widely utilized in
medical imaging for its ability to maintain high-resolution feature maps through-
out the network. However, its substantial computational demands often render
it less viable for real-time surgical applications where rapid inference is essential.
OpenPose, a well-established framework, is renowned for its robustness in multi-
object keypoint detection, commonly applied in biomechanics and medical imag-
ing to track intricate movements with high accuracy. Yet, its reliance on significant
computational resources limits its scalability in resource-constrained environments
like minimally invasive surgery, where efficiency is as crucial as precision. Through
this comparative lens, YOLOv8-Pose’s performance is scrutinized to highlight its
strengths and limitations relative to these established methods.

4.3.3 Performance Metrics and Results

The comparative analysis quantifies the performance of YOLOv8-Pose alongside
YOLOv5-Pose, HRNet, and OpenPose across key metrics—parameters, processing
speed (frames per second, FPS), mAP@0.5, mAP@0.5:0.95, keypoint mAP@0.5:0.95,
and real-time deployment capability—as summarized in Table 4.7. YOLOv8-Pose,
with a parameter range of 3.0 to 43.6 million, achieves an exceptional mAP@0.5
of 99.20% and a keypoint mAP@0.5:0.95 of 88.70%, outperforming its counterparts
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in both detection and pose estimation accuracy while maintaining fast processing
speeds suitable for real-time applications. YOLOv5-Pose, spanning 7 to 46 million
parameters, delivers a respectable mAP@0.5 of 97.50% and keypoint mAP@0.5:0.95
of 85.30%, with comparable speed, yet falls short of YOLOv8-Pose’s precision due
to less advanced feature extraction mechanisms. HRNet, with 28 to 60 million pa-
rameters, records a high mAP@0.5 of 98.30% and keypoint mAP@0.5:0.95 of 87.20%,
reflecting its strength in precise keypoint localization, but its slow inference speed
limits its practicality for intraoperative use. OpenPose, ranging from 40 to 65 million
parameters, achieves an mAP@0.5 of 96.80% and keypoint mAP@0.5:0.95 of 82.90%,
offering robust multi-tool tracking capabilities, yet its very slow processing speed
renders it unsuitable for real-time surgical deployment.

TABLE 4.7: Performance Comparison of Models for Surgical Tool De-
tection and Pose Estimation

Model Params (M) mAP@0.5 mAP@0.5:0.95 Keypoint mAP@0.5:0.95
YOLOv8-Pose  3.0-43.6 99.2 64.6 88.7
YOLOvV5-Pose  7.0-46.0 97.5 58.2 85.3
HRNet 28.0-60.0 98.3 60.1 87.2
OpenPose 40.0-65.0 96.8 57.5 82.9

Note: Speed and deployment: YOLOv8-Pose (Fast, Highly Suitable), YOLOv5-Pose (Fast,
Suitable), HRNet (Slow, Limited), OpenPose (Very Slow, Not Suitable).

4.3.4 Discussion

YOLOV8-Pose demonstrates a superior balance of speed, accuracy, and efficiency,
outpacing YOLOv5-Pose, HRNet, and OpenPose in surgical tool detection and pose
estimation. Its peak mAP@0.5 of 99.2 and keypoint mAP@0.5:0.95 of 88.7 reflect ex-
ceptional precision in identifying tools like clippers and localizing keypoints such
as scissor tips, driven by advanced features like the C2f module and decoupled
head design, surpassing YOLOv5-Pose’s 97.5 and 85.3. HRNet’s competitive ac-
curacy (98.3 mAP@0.5, 87.2 keypoint mAP) is overshadowed by its slow inference
and high resource demands, limiting its real-time utility for guiding irrigator move-
ments in laparoscopic settings. OpenPose, with robust keypoint detection (82.9 key-
point mAP), is hindered by very slow speeds, rendering it impractical for instan-
taneous pose updates in dynamic surgery. YOLOv8-Pose’s fast inference, scalable
variants, and lightweight architecture—particularly the YOLOv8n with 3.0M pa-
rameters—enable seamless deployment on embedded devices like Jetson Nano and
Jetson TX2, tracking tool trajectories (e.g., scissor blade angles) with precision, mak-
ing it an ideal solution for smart surgical systems and robotic-assisted navigation.

4.4 Discussion on Model Strengths and Limitations

441 Strengths

The YOLOv8-Pose model excels in surgical tool detection and pose estimation, deliv-
ering state-of-the-art precision and recall that outshine its predecessors. Its ability to
accurately detect instruments like clippers and estimate their poses with high relia-
bility ensures robust performance in real-world laparoscopic environments, adeptly
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managing variations in lighting, occlusions, and tool orientations—conditions where
partial obstructions or uneven illumination are common. This resilience enhances
its utility in minimally invasive surgery, where precision is paramount. The model’s
real-time inference speed, achieving high frames per second, supports rapid pre-
dictions without latency, making it a cornerstone for time-sensitive robotic-assisted
procedures. Its lightweight design, exemplified by the YOLOv8n variant with only
3.0 million parameters, optimizes computational efficiency, facilitating deployment
on resource-constrained embedded systems like Jetson Nano, thus broadening its
applicability in portable surgical setups. Additionally, YOLOv8-Pose’s versatility
extends to a range of surgical tools—graspers, hooks, scissors—adapting seamlessly
to diverse workflows, positioning it as a transformative asset for Al-driven operat-
ing rooms.

4.4.2 Limitations

Despite its strengths, YOLOv8-Pose encounters challenges in complex surgical sce-
narios. Pose estimation accuracy diminishes when instruments are heavily occluded
or overlap, as the model struggles to precisely localize keypoints in crowded frames,
potentially misaligning critical points like a clipper’s tip. Detection of fine-grained
details and small tools in high-resolution laparoscopic images also poses difficulties,
with accuracy dipping due to the challenge of pinpointing tiny keypoints amidst
clutter, necessitating further optimization for microsurgery tasks. The model’s re-
liance on high-quality, expertly annotated training data presents a bottleneck, as pre-
cise keypoint labeling is time-intensive and resource-heavy, slowing dataset prepa-
ration. Larger variants like YOLOvVSI, with increased computational complexity,
demand significant resources, limiting their real-time feasibility without advanced
hardware acceleration (e.g., GPUs), which may elevate costs. Future advancements
in optimization and data strategies are anticipated to address these limitations, en-
hancing YOLOv8-Pose’s robustness for intricate surgical applications.

4.5 Practical Applications and Future Prospects

4.5.1 Practical Applications

YOLOv8-Pose’s exceptional performance in real-time surgical instrument tracking
positions it as a vital tool for robotic-assisted surgeries and automated systems, en-
hancing accuracy in laparoscopic procedures by precisely estimating tool positions
and orientations—such as a scissor’s cutting angle—thus reducing risks and boost-
ing efficiency. Its continuous monitoring of instrument movements supports sur-
gical training and skill assessment, providing objective feedback on precision and
technique, enabling trainees to refine their skills and minimize errors in minimally
invasive surgery contexts. Integration with Augmented Reality (AR) further am-
plifies its utility, overlaying real-time pose data onto endoscopic views to improve
spatial awareness and guide complex maneuvers, a boon for robotic navigation. The
model’s efficiency, particularly the YOLOv8n variant, optimizes it for Edge Al de-
ployment on low-power devices like Jetson Nano, making it ideal for mobile sur-
gical units and portable Al-driven tools, revolutionizing intraoperative support in
resource-limited settings.
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4.5.2 Future Prospects

Future enhancements aim to expand YOLOv8-Pose’s detection to multiple surgical
instruments like graspers and hooks, enabling simultaneous tracking to streamline
robotic surgery workflows and elevate precision in minimally invasive procedures.
Advancing to 3D pose estimation by incorporating depth data will enhance spa-
tial awareness, reducing occlusion-related errors and improving tool localization in
complex environments, critical for safe navigation. To overcome the labor-intensive
annotation burden, semi-supervised and self-supervised learning will be explored,
leveraging partially labeled data to scale training efficiency and reduce costs. Real-
world deployment in live surgeries, validated through hospital collaborations, will
refine its clinical integration, ensuring compliance with safety and regulatory stan-
dards, positioning YOLOvS8-Pose as a next-generation solution for robotic surgery
and intelligent medical assistance.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has investigated the application of the YOLOv8-Pose model for the detec-
tion and pose estimation of surgical instruments in laparoscopic surgery, addressing
the critical need for real-time, accurate tool tracking in minimally invasive proce-
dures. Through extensive training and evaluation on a curated dataset compris-
ing clippers, irrigators, and scissors, the model demonstrated exceptional perfor-
mance, achieving a mean Average Precision (mAP@0.5) of 99.2% and a keypoint
mAP@0.5:0.95 of 88.7% with the lightweight YOLOvS8n variant. These results under-
score the model’s ability to precisely identify instrument positions and localize key
points—such as the tips and joints of surgical tools—surpassing benchmarks like
YOLOV5-Pose, HRNet, and OpenPose in both accuracy and inference speed. The
qualitative analysis further validated its robustness, effectively tracking tool trajecto-
ries and orientations in real-world endoscopic videos, enhancing surgical precision
and safety.

The study’s findings highlight YOLOv8-Pose’s superior balance of computational
efficiency and precision, driven by architectural innovations such as the C2f mod-
ule and anchor-free design, making it highly suitable for deployment on resource-
constrained embedded devices like Jetson Nano. This efficiency, coupled with its
adaptability to diverse surgical tools, positions the model as a transformative solu-
tion for robotic-assisted surgery, augmented reality navigation, and surgical training
systems. By providing real-time feedback on instrument dynamics, YOLOv8-Pose
bridges a significant gap in smart surgical systems, offering practical advancements
in intraoperative guidance and automation.

Despite its strengths, challenges remain, including reduced pose estimation ac-
curacy under heavy occlusions and limitations in detecting small tools, necessitating
further optimization. The reliance on high-quality annotated datasets also poses a
constraint, highlighting the need for scalable data preparation methods. Nonethe-
less, this research establishes a solid foundation for enhancing surgical tool tracking,
contributing valuable insights to the field of medical Al and paving the way for safer,
more efficient minimally invasive procedures.

5.2 Future Work

Future research will focus on extending YOLOvVS8-Pose’s capabilities to detect and
estimate the pose of a broader range of surgical instruments, such as graspers and
hooks, to support multi-tool tracking in complex laparoscopic workflows. Integrat-
ing 3D pose estimation through depth data will enhance spatial accuracy, mitigating
occlusion-related errors and improving tool localization in intricate surgical scenes.
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To address annotation challenges, semi-supervised learning techniques will be ex-
plored, reducing dependency on manual labeling and enhancing training scalability.
Real-world validation in live surgical settings, in collaboration with medical institu-
tions, will refine the model’s clinical applicability, ensuring it meets safety and regu-
latory standards for widespread adoption in robotic-assisted and Al-driven surgical
systems.
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