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ABSTRACT 

This research explores the innovative application of Artificial Intelligence (AI) 

and Raman Spectroscopy for non-invasive diabetes diagnosis. Traditional methods 

of diagnosing diabetes often require invasive procedures that can be uncomfortable 

and inconvenient for patients. This study addresses the gap in previous research by 

integrating AI algorithms with Raman Spectroscopy to develop a reliable, non-

invasive diagnostic tool for diabetes. The primary aim of this research is to create an 

efficient diagnostic method that simplifies the detection process and improves patient 

experience. 

To achieve this, I employed machine learning models to analyze biochemical 

changes detected by Raman Spectroscopy, enabling the identification of specific 

diabetes biomarkers. The methodology involved a comprehensive literature review, 

selection of suitable AI algorithms, acquisition of Raman Spectroscopy equipment, 

and meticulous data collection. Preliminary testing was conducted to evaluate the 

effectiveness of the proposed diagnostic tool. 

The findings of this research indicate promising potential in detecting diabetes 

biomarkers non-invasively. The integration of AI and Raman Spectroscopy 

demonstrated accuracy in identifying diabetic conditions, paving the way for a 

patient-friendly diagnostic alternative. These results are significant as they highlight 

the feasibility of non-invasive diabetes diagnosis, which could revolutionize how 

diabetes is detected and managed, ultimately enhancing patient care and reducing the 

burden of invasive procedures. 
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CHAPTER 1: INTRODUCTION 

1.1 Rationale 

Diabetes is a chronic condition that occurs when the pancreas produces 

insufficient insulin a hormone that regulates blood glucose or when the body cannot 

effectively use the insulin it generates. Globally, diabetes is acknowledged as one of 

the four priority non-communicable diseases (NCDs). Over recent decades, its 

prevalence and incidence rates have risen significantly [1]. 

Early detection of diabetes can be achieved through affordable blood sugar 

monitoring. Currently, glucometer devices provide a widely accessible means of 

invasive glucose testing by analyzing blood samples in vitro. These devices are user-

friendly and can be employed in both hospital and home settings. Traditional 

glucometers use the electrochemical approach [2], requiring a specified amount of 

blood via a finger prick or subcutaneous lancet. However, many individuals with 

diabetes find this frequent blood sampling uncomfortable and inconvenient, 

necessitating alternative, patient-friendly solutions. 

Non-invasive blood glucose monitoring methods offer a promising, cost-

effective, and innovative alternative for diabetes diagnosis. Numerous studies on 

these techniques have shown encouraging results in identifying diabetes [3–7]. Many 

of these approaches leverage optical sensors to measure a person's glucose 

concentration without invasive procedures. Significantly, such methods avoid 

causing any harm or injury to human tissues, making them a patient-friendly 

diagnostic solution. 

1.2 Aim and Objectives of the Study 

In the realm of artificial intelligence, non-invasive approaches play a crucial 

role by enabling the generation of intermediate data for distillation and correlation 

analysis. This data serves as the foundation for diabetic classification, providing a 

less invasive alternative to traditional diagnostic methods. Briganti et al.[8] have 

highlighted the transformative potential of AI-driven medical technologies, 

emphasizing their emergence as indispensable therapeutic solutions. These 

advancements underscore the application of AI techniques to preventive diagnostics, 

paving the way for early intervention and improved patient outcomes. 
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The primary aim of this study is to develop a non-invasive diagnostic method 

for diabetes by integrating AI algorithms with Raman Spectroscopy. The specific 

objectives of the study are: 

• To review existing literature on the use of AI and Raman Spectroscopy in 

medical diagnostics. 

• To select and implement appropriate AI algorithms for analyzing Raman 

Spectroscopy data. 

• To collect and preprocess data using Raman Spectroscopy. 

• To develop and validate a diagnostic model for diabetes using the integrated 

AI and Raman Spectroscopy approach. 

• To evaluate the effectiveness and accuracy of the developed diagnostic tool. 

1.3 Research Questions 

The study seeks to answer the following research questions: 

1. How can AI be integrated with Raman Spectroscopy to detect diabetes 

biomarkers non-invasively? 

2. What are the key advantages and challenges of using this integrated approach 

for diabetes diagnosis? 

3. How effective is the developed diagnostic tool in identifying diabetic 

conditions compared to traditional methods? 

1.4 Methods of the Study 

The study employs a combination of literature review, experimental data 

collection, and algorithm development. The methodology includes: 

• Conducting a comprehensive literature review to identify relevant studies and 

technologies. 

• Selecting suitable AI algorithms for data analysis. 

• Acquiring Raman Spectroscopy equipment and collecting data from biological 

samples. 

• Preprocessing the collected data to ensure its quality and suitability for 

analysis. 
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• Developing and validating the diagnostic model using machine learning 

techniques. 

• Analyzing the results to assess the accuracy and effectiveness of the diagnostic 

tool. 

1.5 Scope of the Study 

This study focuses on the integration of AI and Raman Spectroscopy for non-

invasive diabetes diagnosis. It includes: 

• A detailed review of relevant literature and technologies. 

• Experimental data collection and analysis using Raman Spectroscopy. 

• Development and validation of an AI-based diagnostic model. 

• Evaluation of the developed diagnostic tool's effectiveness. 

1.6 Significance of the Study 

The significance of this study lies in its potential to revolutionize diabetes 

diagnosis by providing a non-invasive, accurate, and efficient diagnostic tool. The 

findings of this research could lead to improved patient care, reduced discomfort 

associated with traditional diagnostic methods, and a more accessible approach to 

diabetes detection. Additionally, this study contributes to the growing body of 

knowledge on the application of AI and Raman Spectroscopy in medical diagnostics. 

1.7 Structure of the Study 

This thesis is structured as follows: 

• Chapter 1: Introduction - Provides an overview of the research, including its 

rationale, aims, objectives, research questions, methods, scope, significance, 

and structure. 

• Chapter 2: Literature Review - Summarizes existing research on AI and 

Raman Spectroscopy in medical diagnostics, highlighting gaps and 

opportunities for further study. 

• Chapter 3: Methodology - Describes the research design, data collection 

methods, and analytical techniques used in the study. 
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• Chapter 4: Results - Presents the findings of the study, including data 

analysis and interpretation. 

• Chapter 5: Discussion - Discusses the implications of the findings, compares 

them with existing literature, and suggests potential improvements. 

• Chapter 6: Conclusion - Summarizes the key points of the research, reflects 

on the overall progress and achievements, and suggests directions for future 

research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Diabetes 

2.1.1 Introduction of Diabetes 

Diabetes is a chronic condition that occurs when the body is unable to properly 

use the insulin hormone produced by the pancreas or doesn't produce enough to 

regulate blood sugar levels. Glucose (C6H12O6), a simple sugar and the most 

common monosaccharide, plays a key role in hyperglycemia and diabetes. Through 

photosynthesis, plants and most algae create glucose from water and CO2 using 

sunlight. Glucose is essential for energy metabolism in all living organisms, used in 

cellular respiration to produce energy. In plants, it is stored as cellulose and starch 

(mainly branched and single-chain amylose), while animals store glucose as 

glycogen. D-glucose is naturally occurring, whereas L-glucose is artificially 

produced in limited amounts and is less significant. 

 

Figure 1: Haworth projections(James Ashenhurst,2024) 

The liver plays a vital role in maintaining the body's glucose levels by serving 

as a glucose reservoir. It responds to the body's needs by synthesizing and storing 

glucose, regulated by key hormones such as insulin and glucagon. After meals, when 

insulin levels are high and glucagon levels are low, the body stores glucose as 

glycogen. During periods without food intake, such as overnight or between meals, 

the liver converts glycogen back into glucose through a process known as 

glycogenolysis. Additionally, the liver can produce essential glucose by synthesizing 

waste products, lipid byproducts, and amino acids through a process called 

gluconeogenesis. This multifaceted role ensures a steady supply of glucose, providing 

https://www.masterorganicchemistry.com/about/
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energy to the body even during fasting periods, which is crucial for maintaining 

overall metabolic balance. 

The liver plays a pivotal role in maintaining the body's glucose levels by acting 

as a reserve. It synthesizes and stores glucose in response to the body's needs, 

regulated by key hormones such as insulin and glucagon. After meals, when insulin 

levels are high and glucagon levels are low, the body stores glucose as glycogen. 

Conversely, during periods without food intake, such as at night or between meals, 

the liver converts glycogen into glucose through a process called glycogenolysis. 

Furthermore, the liver can produce essential glucose by synthesizing waste products, 

lipid byproducts, and amino acids through gluconeogenesis. This dual functionality 

ensures a steady supply of glucose, providing energy even during fasting periods and 

maintaining overall metabolic balance. [9] 

2.1.2 Types of Diabetes 

Diabetes can be categorized into three main types: type 1, type 2, and gestational 

diabetes. Most patients are diagnosed with either type 1 or type 2 diabetes. 

 

Figure 2: Types of Diabetes (North Dakota Department of Health and Human 

Services, 2024) 

 

 

 

 

2.1.2.1 Type 1 Diabetes 

Type 1 Diabetes is a chronic autoimmune condition where the immune system 

mistakenly attacks and destroys the insulin-producing beta cells in the pancreas. As 
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a result, the body produces little to no insulin, a hormone essential for regulating 

blood sugar levels. Without insulin, glucose cannot enter cells to provide energy, 

leading to elevated blood sugar levels. This form of diabetes often develops in 

childhood or adolescence but can occur at any age. Symptoms include frequent 

urination, excessive thirst, extreme hunger, weight loss, fatigue, and blurry vision. 

Individuals with type 1 diabetes require daily insulin therapy, either through 

injections or an insulin pump, to manage their blood sugar levels effectively. While 

the exact cause of type 1 diabetes is unknown, it is believed to result from a 

combination of genetic predisposition and environmental triggers, such as viral 

infections. It is less common than type 2 diabetes, but it requires careful management, 

including blood sugar monitoring, a healthy diet, and regular exercise, to prevent 

complications. [10] 

2.1.2.2 Type 2 Diabetes 

Type 2 Diabetes is a chronic metabolic disorder that occurs when the body 

becomes resistant to insulin or when the pancreas does not produce enough insulin to 

regulate blood sugar levels. Unlike type 1 diabetes, type 2 often develops gradually 

over time and is more common in adults, though it is increasingly being diagnosed in 

children and adolescents. The primary risk factors for type 2 diabetes include obesity, 

lack of physical activity, poor diet, age, family history, and certain ethnic 

backgrounds. Symptoms may include increased thirst, frequent urination, fatigue, 

blurred vision, and slow healing of wounds, though it can sometimes be 

asymptomatic in its early stages. Management of type 2 diabetes typically involves 

lifestyle modifications such as a healthy diet, regular exercise, and weight loss. In 

some cases, medication or insulin therapy may be required to maintain blood sugar 

levels. Early diagnosis and consistent management are crucial in preventing 

complications like cardiovascular disease, kidney damage, and nerve damage. [11] 

2.1.2.3 Gestational Diabetes 

Gestational Diabetes is a type of diabetes that develops during pregnancy in 

women who have not previously been diagnosed with diabetes. It occurs when the 

body cannot produce enough insulin to meet the increased demands of pregnancy, 

leading to elevated blood sugar levels. This condition typically arises in the second 

or third trimester and often resolves after delivery, but it requires careful management 

to ensure the health of both the mother and baby. Risk factors for gestational diabetes 

include a history of the condition in previous pregnancies, being overweight, a family 
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history of diabetes, or belonging to certain ethnic groups with higher susceptibility. 

Symptoms are often mild or absent, but in some cases, increased thirst, frequent 

urination, or fatigue may be observed. Management includes adopting a healthy diet, 

regular physical activity, and monitoring blood sugar levels. In some cases, insulin 

therapy or medication may be required. While gestational diabetes usually resolves 

after childbirth, women who experience it are at a higher risk of developing type 2 

diabetes later in life, and regular follow-ups are recommended. [12] 

2.1.2.4 Secondary or Other Specific Types of Diabetes 

Secondary or Other Specific Types of Diabetes refer to forms of diabetes caused 

by underlying medical conditions, genetic factors, or external influences, rather than 

the typical mechanisms seen in type 1, type 2, or gestational diabetes. These forms 

are less common but are significant to understand for accurate diagnosis and 

management. 

• Genetic Defects of Beta Cell Function: Known as monogenic diabetes, 

this group includes conditions like Maturity-Onset Diabetes of the Young 

(MODY), caused by single-gene mutations that impair insulin 

production. 

• Pancreatic Disorders: Diseases such as pancreatitis, cystic fibrosis, or 

pancreatic cancer can damage the pancreas, reducing insulin production 

and leading to diabetes. 

• Endocrine Disorders: Conditions like Cushing's syndrome or 

acromegaly can cause elevated levels of hormones like cortisol or growth 

hormone, which counteract insulin's effects and result in diabetes. 

• Drug or Chemical-Induced Diabetes: Certain medications, such as 

corticosteroids or antipsychotics, or exposure to toxins, can impair 

glucose metabolism and induce diabetes. 

• Infections and Other Conditions: Rare infections or autoimmune 

diseases can trigger diabetes by affecting insulin production or action. 

• Genetic Syndromes: Some syndromes, including Down syndrome, 

Turner syndrome, and Klinefelter syndrome, have a higher prevalence of 

diabetes. 
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Management of secondary diabetes typically involves addressing the root cause, 

such as treating the underlying condition or adjusting medications, alongside standard 

diabetes care. 

2.2 Substance of diabetes mellitus 

Diabetes manifests in various forms, depending on its underlying 

cause. Initially referred to as non–insulin-dependent diabetes, Type 2 Diabetes 

Mellitus (T2DM) accounts for 90–95% of diabetes cases.[13] In T2DM, individuals 

experience insulin resistance and relative insulin deficiency. Interestingly, these 

individuals are not commonly associated with insulin treatment initially. 

The exact causes of this type of diabetes remain unclear, but it is unlikely to 

involve autoimmune destruction of β-cells (as seen in Type 1 Diabetes). 

Furthermore, none of the other known causes of diabetes apply to this specific type. 

In the early 1980s, HbA1C was recommended as a diagnostic test. However, 

concerns about its availability and insufficient assay standardization hindered its 

widespread adoption [14]. It wasn’t until 2009 that an international expert 

panel suggested including HbA1C in diagnostic criteria. Specifically, they 

recommended a threshold of 48 mmol/mol (6.5% DCCT) [15]. 

Both the American Diabetes Association (ADA)  and the World Health 

Organization (WHO)  have endorsed these criteria. As a result, many countries now 

consider it the gold standard for T2DM diagnostic testing (see Table 1). 

 FPG (mg/dL) HbA1C (% DCCT) 

Normal <100 <5.7% 

Pre-diabetes 100-125 5.7% - 6.4% 

Diabetes Mellitus >= 126 >= 6.5% 

Table 1: ADA diabetes diagnostic criteria in 2015 

2.3 Traditional invasive methods for type 2 diabetes mellitus detection 

2.3.1 Point of care Hemoglobin A1C Test (POCT):   

Point-of-care Hemoglobin A1C (HbA1c) tests, commonly referred to as POCT, 

are diagnostic tools used to measure the average blood glucose levels over the past 

two to three months. These tests are crucial for the diagnosis and management of 

diabetes, providing immediate results during patient consultations. 

Key Features and Benefits: 
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• Immediate Results: POCT devices provide rapid results, allowing 

healthcare providers to make timely therapeutic decisions during the same 

visit. This reduces the need for additional appointments and follow-ups. 

• Convenience: These tests can be performed in various settings, including 

clinics, pharmacies, and even at home, making them accessible and 

convenient for patients. 

• Improved Glycemic Control: By offering immediate feedback, POCT 

devices help in better monitoring and management of blood glucose levels, 

leading to improved glycemic control and reduced risk of complications. 

• Standardization: Modern POCT devices are standardized and certified by 

programs like the National Glycohemoglobin Standardization Program 

(NGSP), ensuring accuracy and consistency in results. [16-17] 

Clinical Applications: 

• Diagnosis of Diabetes: POCT HbA1c tests are used to diagnose diabetes 

by measuring the percentage of glycated hemoglobin in the blood. An 

HbA1c level of 6.5% or higher indicates diabetes. [18] 

• Monitoring Diabetes: These tests are also used to monitor the effectiveness 

of diabetes treatment plans, helping to adjust medications and lifestyle 

changes as needed. 

• Screening: POCT HbA1c tests can be used for screening individuals at 

risk of developing diabetes, enabling early intervention and prevention 

strategies. 

Considerations: 

• Accuracy: While POCT devices are generally accurate, it is essential to 

follow proper testing procedures to ensure reliable results. Factors such as 

device calibration, sample handling, and operator training can impact 

accuracy. [16] 

• Cost: The cost of POCT devices and test cartridges can vary, and it is 

important to consider the cost-effectiveness of these tests in different 

healthcare settings. [17] 

• Limitations: POCT HbA1c tests may have limitations in certain clinical 

situations, such as in patients with hemoglobin variants or conditions 

affecting red blood cell turnover. [16] 
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Overall, point-of-care HbA1c tests are valuable tools in the management of 

diabetes, offering convenience, immediate results, and improved patient outcomes. 

By enabling timely therapeutic decisions and better glycemic control, these tests play 

a crucial role in diabetes care. 

2.3.2 The fasting plasma glucose (FPG) test:  

The fasting plasma glucose (FPG) test, also known as the fasting blood glucose 

test (FBG) or fasting blood sugar test, measures the levels of glucose (sugar) in the 

blood after a period of fasting, typically for at least 8 hours. This test is a simple, 

accurate, and inexpensive method used to screen for diabetes and assess problems 

with insulin functioning1. 

Key Features and Benefits: 

• Diagnosis of Diabetes: The FPG test is commonly used to diagnose 

diabetes and pre-diabetes. A fasting blood glucose level of 126 mg/dL (7.0 

mmol/L) or higher on two separate occasions indicates diabetes. 

• Screening: It is recommended as a screening test for individuals aged 35 

or older and those with symptoms or risk factors for diabetes. 

• Monitoring: The FPG test can be used to monitor blood glucose levels in 

individuals already diagnosed with diabetes, helping to evaluate the 

effectiveness of their management plan. 

Procedure: 

• Preparation: Patients are instructed to fast for at least 8 hours before the 

test, during which they can only drink water. 

• Blood Sample: A blood sample is taken from the patient's arm, usually in 

the morning to ensure adequate fasting time. 

• Results: The blood sample is analyzed to measure the glucose levels. 

Normal fasting blood glucose levels are below 100 mg/dL (5.5 mmol/L). 

Levels between 100 and 125 mg/dL (5.5 to 6.9 mmol/L) indicate impaired 

fasting glucose, a form of pre-diabetes. 

Considerations: 

• Accuracy: The FPG test is regarded as accurate and more sensitive than 

the A1C test, though it is not as sensitive as the oral glucose tolerance test 

(OGTT). 

• Risks: As a standard blood draw, the FPG test is considered safe, with 

minimal risks such as bruising or infection at the puncture site. 
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• Limitations: The FPG test may not be suitable for individuals with certain 

medical conditions or those who cannot fast for extended periods. 

Overall, the fasting plasma glucose test is a valuable tool in the diagnosis and 

management of diabetes, providing essential information about blood glucose levels 

and helping to guide treatment decisions. [19-20] 

2.3.3 The oral glucose tolerance test (OGTT):  

The oral glucose tolerance test (OGTT) is a diagnostic tool used to measure the 

body's ability to metabolize glucose, which helps in diagnosing diabetes and other 

conditions related to glucose metabolism. The test involves fasting overnight and then 

consuming a glucose-rich solution. Blood samples are taken at specific intervals to 

monitor how the body processes the glucose over time. 

Key Features and Benefits: 

• Diagnosis of Diabetes: The OGTT is considered the gold standard for 

diagnosing type 2 diabetes, gestational diabetes, and prediabetes. It can 

detect abnormalities in glucose metabolism that other tests might miss. 

• Screening for Gestational Diabetes: The OGTT is commonly used during 

pregnancy to screen for gestational diabetes, typically between 24 and 28 

weeks of gestation. 

• Assessment of Glucose Tolerance: The test helps assess how well the body 

handles glucose, providing insights into insulin sensitivity and beta-cell 

function. 

Procedure: 

• Preparation: Patients are required to fast for at least 8 hours before the test. 

It is usually scheduled in the morning to ensure adequate fasting time. 

• Glucose Solution: After the initial fasting blood sample is taken, the 

patient drinks a glucose solution containing 75 grams of glucose (for non-

pregnant adults). For pregnant women, the solution may contain 50 or 100 

grams of glucose, depending on the specific protocol. 

• Blood Samples: Blood samples are taken at multiple intervals, typically at 

0, 1, and 2 hours after consuming the glucose solution. These samples 

measure the blood glucose levels to see how the body processes the 

glucose. 

Interpretation of Results: 

• Normal Glucose Tolerance: Blood glucose levels return to normal within 

2 hours. 
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• Impaired Glucose Tolerance (Prediabetes): Blood glucose levels are 

higher than normal but not high enough to be classified as diabetes. 

• Diabetes: Blood glucose levels remain elevated, indicating a problem with 

glucose metabolism. 

Considerations: 

• Accuracy: The OGTT is highly accurate but requires proper preparation 

and adherence to the testing protocol to ensure reliable results. 

• Risks: The test is generally safe, but some patients may experience nausea 

or dizziness from the glucose solution. There is also a small risk of 

bruising or infection at the blood draw site. 

• Limitations: The OGTT may not be suitable for individuals with certain 

medical conditions or those who cannot fast for extended periods. 

Overall, the oral glucose tolerance test is a valuable tool in diagnosing and 

managing diabetes and other glucose metabolism disorders. It provides 

comprehensive insights into how the body handles glucose, helping healthcare 

providers make informed decisions about treatment and management. [20-21] 

2.3.4 Real Time Continuous Glucose Monitoring 

Real-time Continuous Glucose Monitoring (CGM) is a cutting-edge technology 

that allows individuals, particularly those with diabetes, to continuously monitor their 

blood glucose levels throughout the day and night. This technology provides real-

time data, enabling better management of blood sugar levels and more informed 

decision-making regarding diet, exercise, and medication. 

Key Features and Benefits: 

• Continuous Monitoring: CGM devices provide continuous glucose 

readings, typically every few minutes, allowing users to see trends and 

patterns in their glucose levels. 

• Immediate Feedback: Real-time data helps users make immediate 

adjustments to their lifestyle or treatment plan, improving glycemic 

control and reducing the risk of complications. 

• Alerts and Alarms: Many CGM devices come with customizable alerts 

and alarms that notify users when their glucose levels are too high or too 

low, enabling prompt action to prevent hyperglycemia or hypoglycemia. 
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• Data Integration: CGM systems often integrate with smartphones, insulin 

pumps, and other devices, providing a comprehensive view of glucose 

levels and facilitating better diabetes management. 

• Reduced Finger Pricks: While occasional finger-prick tests may still be 

necessary, CGM significantly reduces the need for frequent blood glucose 

testing, making diabetes management less invasive and more convenient. 

Method of operation: 

A CGM system typically consists of three main components: 

• Sensor: A small sensor is inserted under the skin, usually on the abdomen 

or arm, to measure glucose levels in the interstitial fluid. 

• Transmitter: The sensor sends glucose data wirelessly to a transmitter, 

which then relays the information to a receiver or a compatible device, 

such as a smartphone or insulin pump. 

• Receiver: The receiver displays the glucose readings in real-time, allowing 

users to monitor their levels continuously. 

Clinical Applications: 

• Diabetes Management: CGM is particularly beneficial for individuals with 

type 1 diabetes, type 2 diabetes, and gestational diabetes, helping them 

maintain optimal blood glucose levels and avoid complications. 

• Personalized Treatment: By providing detailed glucose data, CGM 

enables healthcare providers to tailor treatment plans to individual needs, 

improving overall diabetes care. 

• Research and Development: CGM technology is also used in clinical 

research to study glucose metabolism and develop new diabetes 

treatments. 

Considerations: 

• Accuracy: While CGM devices are generally accurate, they may have a 

slight lag compared to traditional blood glucose meters. Regular 

calibration and occasional finger-prick tests are recommended to ensure 

accuracy. 

• Cost: CGM systems can be expensive, and not all insurance plans cover 

them. It's important to consider the cost and potential benefits when 

deciding whether to use a CGM device. 
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• Maintenance: Sensors need to be replaced regularly, typically every 7 to 

14 days, depending on the device. Proper maintenance and adherence to 

the manufacturer's guidelines are essential for optimal performance. 

Real-time Continuous Glucose Monitoring is a powerful tool that enhances 

diabetes management by providing continuous, real-time data on glucose levels. This 

technology empowers individuals to take control of their health, make informed 

decisions, and improve their quality of life. [22] 

2.4 Artificial Intelligence 

2.4.1 Definition and Concepts 

Artificial Intelligence (AI) refers to the simulation of human intelligence in 

machines that are programmed to think and learn like humans. The basic concepts of 

AI include: 

• Machine Learning (ML): A subset of AI that involves training algorithms 

to learn from and make predictions based on data. Machine learning 

models can improve their performance over time without being explicitly 

programmed [23]. 

• Neural Networks: Inspired by the human brain, neural networks consist of 

interconnected nodes (neurons) that process data and learn patterns. They 

are particularly effective in handling complex data and are the foundation 

of many deep learning models [24]. 

• Deep Learning: A specialized subset of machine learning that involves 

neural networks with multiple layers (deep neural networks). Deep 

learning models can automatically extract and learn features from raw 

data, making them highly effective for tasks like image and speech 

recognition. 

2.4.2 AI in Medical Diagnostics 

Artificial Intelligence (AI) is revolutionizing healthcare by enhancing 

diagnostic accuracy, enabling early disease detection, and improving patient 

outcomes. AI's ability to process vast amounts of data quickly and accurately is 

transforming how diseases are diagnosed and treated.  

Several studies have successfully utilized AI for diagnosing diseases, including 

diabetes for instance, AI algorithms have been developed to autonomously screen for 

diabetic retinopathy from fundus photography, achieving sensitivity and specificity 

greater than 85% compared to human graders. Another study explored the use of AI 
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for automatic retinal screening, clinical diagnosis support, and patient self-

management tools, which have been approved by the US Food and Drug 

Administration. [27] 

The key findings from these studies include improved diagnostic accuracy, early 

detection of diseases, and personalized treatment plans. AI-driven diagnostics are 

democratizing healthcare by making early and accurate diagnoses more accessible, 

especially in regions with limited access to specialized medical professionals. 

Additionally, AI can reduce variability in diagnostic outcomes by providing 

consistent, data-driven insights. [28] 

Recent research indicates that blood glucose monitoring can now be achieved 

through non-invasive methods [30]. The invasive nature of widely used commercial 

glucose meters has led to infections and discomfort for many individuals with 

diabetes. Consequently, there is growing interest in non-invasive blood glucose 

monitoring among researchers worldwide. However, non-invasive blood glucose 

measurement technology faces challenges related to detection concepts. Fields such 

as chemistry, biology, optics, electromagnetic waves, and computer science stand to 

benefit from this innovative approach. A comprehensive discussion of the advantages 

and limitations of non-invasive versus invasive technologies, including insights into 

electrochemistry and optics for non-invasive methods, can be found in [31]. 

Transdermal biosensors and wearable technologies are enhancing the efficiency, 

affordability, resilience, and competitiveness of non-invasive blood glucose 

monitoring in the market. 

Over the past two decades, numerous studies have explored non-invasive blood 

glucose testing methods. Researchers have investigated various optical techniques for 

noninvasive measurements, including near-infrared (NIR) [30] spectroscopy, 

photoacoustic imaging, Raman spectroscopy [32], polarized optical rotation, and 

optical coherence tomography [33]. In Raman spectroscopy, a transilluminated laser 

beam serves as the excitation light source, projected onto a specific point on the 

subject’s body (either in vivo or in vitro) to monitor glucose levels. 

Raman spectroscopy, a non-destructive and label-free fingerprinting technique, 

is increasingly enhancing biomedical diagnostics both in vivo and in vitro. Its benefits 

include relatively short acquisition time, non-invasiveness, and the ability to provide 

biochemical molecular information. By selecting a source within the red area of the 

spectrum or near-infrared (NIR), both the source and the signal can fall within the 
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optical window for tissue transparency, allowing for penetration depths of up to 

millimeters into human tissue. Notably, Shao et al [34] demonstrated that Raman 

spectra obtained using a diode laser operating at 785 nm can be used for non-invasive 

quantitative blood glucose analysis in living animals. The relationship between 

Raman intensity and blood glucose concentration was discovered, with an R-squared 

value of 0.91 and a Mean Absolute Error rate of 5.7%. 

In the context of non-invasive blood glucose monitoring, Habibullah et al. 

proposed an SVM classification technique that achieved an 85% accuracy (A, 2022). 

They utilized a Gaussian filter and histogram-based feature extraction for picture 

database analysis. Additionally, Villa-Manríquez et al. demonstrated that Raman 

spectroscopy, when compared to NIR, can achieve over 80% accuracy in blood 

glucose determination using the same classification model (PCA-SVM) [35]. This 

underscores the clear advantage and potential of Raman spectroscopy for assessing 

blood glucose concentration. 

Shokrekhodaei et al. have also suggested a number of additional techniques. 

According to [36], the author's SVM model for classifying the glucose range based 

on 21 discrete concentration value classes had a mean F1-score of 99%. 

2.4.3 Applications in Diagnostics 

AI algorithms have been applied in medical diagnostics in various ways, 

focusing on pattern recognition and predictive analytics: 

• Pattern Recognition: AI algorithms like CNNs are used to analyze medical 

images (e.g., X-rays, MRIs, CT scans) to identify abnormalities and 

diagnose conditions such as cancer, pneumonia, and retinal diseases. 

These models can detect subtle patterns that may be missed by human 

experts, leading to earlier and more accurate diagnoses. 

• Predictive Analytics: Machine learning models, including SVMs and 

random forests, are used to predict the likelihood of diseases based on 

patient data (e.g., electronic health records, genetic information). These 

models can identify risk factors and predict disease progression, enabling 

personalized treatment plans and proactive interventions. 

• Automated Diagnostics: AI-driven tools are used to provide real-time 

diagnostic support for clinicians. For example, AI algorithms can analyze 

blood test results, detect diabetic retinopathy from retinal images, and 
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classify skin lesions as benign or malignant. These tools enhance the 

efficiency and accuracy of clinical decision-making. 

By integrating AI algorithms with medical diagnostics, healthcare professionals 

can improve diagnostic accuracy, reduce variability in outcomes, and provide 

personalized care to patients. Predictive analytics is the main goal of the project. 

The future of AI in healthcare is poised to revolutionize the industry by 

dramatically improving patient care, diagnostics, and operational efficiency. With its 

ability to analyze vast datasets at incredible speeds, AI is enabling predictive 

analytics, personalized treatments, and early disease detection on an unprecedented 

scale. AI-driven advancements in genomics are accelerating the shift toward 

precision medicine, tailoring treatments to individual genetic profiles and increasing 

the effectiveness of therapies. This technology is paving the way for breakthroughs 

in managing complex diseases such as cancer, diabetes, and genetic disorders. [37] 

Medical imaging, one of AI’s most impactful applications, is significantly 

enhancing diagnostic accuracy. AI algorithms can detect anomalies in X-rays, MRIs, 

and CT scans with greater precision, aiding radiologists in diagnosing conditions like 

tumors, fractures, and cardiovascular diseases. These tools not only improve accuracy 

but also reduce diagnostic errors, ensuring better patient outcomes. AI is also 

transforming clinical workflows by automating time-consuming tasks such as 

medical record documentation and scheduling, thereby freeing healthcare 

professionals to focus more on direct patient care. [37] 

Moreover, predictive models powered by AI are reshaping how healthcare 

systems manage resources. These models can anticipate disease outbreaks, detect 

early warning signs of conditions like heart attacks or sepsis, and identify patients at 

risk, allowing timely interventions. Beyond clinical applications, AI is improving 

operational efficiency by streamlining processes, reducing administrative overhead, 

and optimizing supply chain logistics. [38] 

As AI technologies evolve further, their integration into wearable devices and 

remote monitoring systems is expected to transform preventive care. Patients will 

have more access to real-time health insights, empowering them to make informed 

decisions and enabling physicians to intervene earlier. The combination of AI and 

robotics also promises advances in surgical precision, rehabilitation, and elderly care.  

In the coming years, AI’s role in healthcare will expand, driving a shift from 

reactive treatment to proactive, predictive, and personalized care. This transformation 
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has the potential to improve patient outcomes, reduce healthcare costs, and make 

quality care more accessible worldwide, ultimately redefining the way healthcare is 

delivered. [39] 

2.5 AI Algorithms 

Several AI algorithms are relevant to this study, including: 

2.5.1 Support Vector Machines (SVM) 

Support Vector Machine (SVM) is one of the most widely used supervised 

machine learning algorithms for classification and regression tasks, renowned for its 

ability to handle high-dimensional data efficiently. The primary function of SVM is 

to identify the optimal decision boundary that separates different classes within a 

dataset. In classification problems, SVM constructs a hyperplane that divides data 

points into distinct categories, ensuring that the separation margin between them is 

maximized. A wider margin improves generalization, allowing the model to classify 

new, unseen data points more accurately while reducing the risk of misclassification 

errors. The critical data points closest to the hyperplane, known as support vectors, 

are instrumental in influencing the boundary's position, making them essential for 

decision-making in the SVM framework. 

For datasets that are non-linearly separable, SVM employs a kernel trick to 

transform input data into a higher-dimensional space, where linear separation 

becomes feasible. Various kernel functions serve different purposes: the linear kernel 

is used when data can be separated with a straight line, while the polynomial kernel 

and radial basis function (RBF) kernel help model more complex, curved decision 

boundaries. The sigmoid kernel is often associated with neural network-inspired 

classification problems, adding flexibility in cases where linear or polynomial 

approaches fail. Through these transformations, SVM gains the ability to classify 

highly non-linear datasets with improved accuracy, making it an invaluable tool in 

pattern recognition, image analysis, and biomedical signal processing. 

SVM is particularly effective in handling both linear and nonlinear problems, 

thanks to its adaptability in high-dimensional feature spaces. In nonlinear datasets, 

the kernel trick allows SVM to project input features into a higher-dimensional space, 

where a linear hyperplane can separate previously inseparable classes. The most 

commonly used kernels include the linear kernel, which performs well on 

straightforward classification tasks with minimal curvature in decision boundaries; 

the polynomial kernel, which introduces curvature for more complex data 
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relationships; and the RBF kernel, which is widely regarded as one of the most 

flexible and powerful options for non-linear classification. However, selecting the 

appropriate kernel for a given dataset remains a challenge, as there is no universal 

approach to kernel selection. Instead, researchers must rely on experimental 

evaluations and dataset-specific tuning to identify the best-performing kernel, as 

noted by Ho [25]. 

Support Vector Machine (SVM) has become a widely researched machine 

learning model for biomedical applications of Raman spectroscopy, showing 

remarkable effectiveness in disease diagnostics, molecular fingerprinting, and 

spectral classification. The ability of SVM to process high-dimensional spectral data 

has made it a valuable tool for non-invasive medical analysis, allowing researchers 

to detect subtle biochemical changes indicative of disease. 

Studies have demonstrated SVM’s proficiency in distinguishing different 

pathological conditions based on Raman spectral variations, enabling the 

classification of diseases such as cancer, autoimmune disorders, and bacterial 

infections. Its ability to construct optimal hyperplanes ensures precise separation 

between classes, minimizing misclassification errors. The kernel trick, which 

transforms spectral features into higher-dimensional spaces, further enhances SVM's 

ability to handle non-linearly separable biomedical data. 

Moreover, SVM’s integration with preprocessing techniques such as baseline 

correction, intensity modulation, and feature extraction has significantly improved 

the accuracy of biomedical spectral analysis. By refining raw spectral signals, these 

techniques optimize SVM’s ability to differentiate molecular structures, reinforcing 

its role in AI-driven Raman spectroscopy for medical diagnostics. 

SVM has been extensively applied in biomedical applications, particularly in 

Raman spectroscopy, where high-dimensional spectral data must be analyzed 

efficiently. Various studies have explored SVM’s role in non-invasive medical 

analysis, emphasizing its ability to classify diseases, identify molecular fingerprints, 

and analyze spectral variations. A study published in Nature investigated the use of 

SVM for diagnosing primary Sjögren’s syndrome (pSS) using Raman spectroscopy 

of blood samples. The researchers applied Principal Component Analysis (PCA) for 

feature selection and Particle Swarm Optimization (PSO) to fine-tune SVM 

parameters, achieving an impressive classification accuracy of 94.44%. These 
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findings confirm that SVM is highly effective in distinguishing autoimmune 

disorders, reinforcing its role in spectral-based diagnostics.[49]  

A study published in BMC Cancer explored the use of serum-based Raman 

spectroscopy for lung cancer screening, highlighting the effectiveness of Support 

Vector Machine (SVM) in distinguishing cancerous versus non-cancerous samples. 

By leveraging advanced spectral classification techniques, the researchers achieved 

91.67% sensitivity and 92.22% specificity, confirming SVM’s ability to detect subtle 

biochemical variations that differentiate malignant and benign cases. These findings 

reinforce the potential of Raman spectroscopy combined with AI-driven analysis as 

a promising tool for non-invasive cancer diagnostics. The study also emphasized the 

importance of spectral preprocessing techniques, such as baseline correction and 

noise filtering, which significantly improved the model’s classification accuracy.[50] 

Another study published in Springer investigated the application of Surface-

Enhanced Raman Spectroscopy (SERS) for detecting trace-level analytes in 

biological samples, focusing on molecular fingerprinting and chemical specificity. 

SVM played a crucial role in enhancing spectral interpretation, allowing the model 

to discriminate minute spectral differences within complex environments. The 

researchers found that combining chemometric methods with machine learning 

models, such as SVM, resulted in higher sensitivity and improved accuracy in 

molecular detection. The study reinforced the importance of machine learning 

integration in spectral analysis, paving the way for more precise and reliable 

biomedical applications in disease diagnostics.[51] 

These studies highlight SVM’s strengths in biomedical diagnostics, proving its 

effectiveness in handling high-dimensional spectral data, improving classification 

accuracy, and enabling non-invasive disease detection. Despite its advantages, 

several challenges remain, including computational complexity, noise sensitivity, and 

hyperparameter tuning difficulties. Large spectral datasets require significant 

processing power, and selecting the optimal kernel function and hyperparameters is 

often an iterative, computationally intensive task. Noise sensitivity is another 

concern, as Raman spectroscopy signals are susceptible to background fluorescence 

interference, requiring robust baseline correction techniques for optimal classification 

performance. 

In this research, SVM was implemented to analyze Raman spectral data, 

assessing classification accuracy before and after preprocessing. The results 
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confirmed that effective baseline correction techniques, such as PenPoly (Polynomial 

Regression) and IMP (Intensity Modulation Processing), significantly enhanced 

classification accuracy. By refining spectral signals before applying SVM, the study 

demonstrated that proper preprocessing leads to improved feature extraction, better 

class separability, and higher prediction accuracy. This reinforces SVM’s capability 

to handle high-dimensional data efficiently, proving its relevance and effectiveness 

in AI-driven medical diagnostics. 

Linear Kernel 

The linear kernel is one of the simplest yet most widely used kernel functions 

in Support Vector Machines (SVM), particularly when working with linearly 

separable data. It operates by defining a straight-line decision boundary in the feature 

space, making it computationally efficient and easy to interpret. Unlike non-linear 

kernels such as polynomial or radial basis function (RBF), the linear kernel does not 

transform the data into higher-dimensional spaces but instead relies on the dot 

product between feature vectors to separate classes. Mathematically, it is expressed 

as: 

K(x,y)=x.y 

where ( x ) and ( y ) are feature vectors. This simple approach makes it highly 

effective for high-dimensional datasets, such as text classification, gene expression 

analysis, and spectral data processing, where the number of features is significantly 

larger than the number of samples. 

One of the key advantages of using a linear kernel in SVM is its ability to 

prevent overfitting while maintaining generalization performance. Because it focuses 

on maximizing the margin between classes rather than creating complex decision 

boundaries, it ensures stable classification results in situations where data naturally 

follows a linear separation pattern. Additionally, the linear kernel is computationally 

less intensive, making it faster to train and deploy in large-scale applications. This 

efficiency makes it particularly suitable for scenarios where the dataset consists of 

thousands of features, such as Raman spectral analysis, where the model must 

distinguish chemical compositions based on intensity variations. 

However, despite its advantages, the linear kernel has certain limitations. One 

of its biggest drawbacks is its inability to model non-linear relationships. If data 

points exhibit complex curved or clustered boundaries, a linear kernel may struggle 

to provide accurate classification results. In such cases, alternative kernels like 
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polynomial or RBF are preferred, as they can better capture intricate structures within 

the data. Furthermore, the linear kernel assumes that data can be perfectly separated 

in the original feature space, which may not always be the case, especially in 

biomedical signal processing or image recognition tasks. 

Polynomial kernel 

The polynomial kernel is a widely used kernel function in Support Vector 

Machines (SVM) that enables the model to capture non-linear relationships between 

data points. Unlike the linear kernel, which assumes a straight-line separation 

between classes, the polynomial kernel introduces higher-order transformations, 

allowing for more flexible decision boundaries. This is particularly useful for datasets 

where the relationship between features is not strictly linear, as it enables 

classification in cases where traditional methods fail to separate distinct groups 

effectively. 

Mathematically, the polynomial kernel is expressed as 

K(x,y)=(x.y+c)d 

Where ( x ) and ( y ) represent feature vectors, ( c ) is a constant (often set to 1), 

and ( d ) denotes the degree of the polynomial. The degree of the polynomial plays a 

crucial role in determining the complexity of the decision boundary the higher the 

degree, the more intricate the separation, allowing for finer classification of complex 

patterns within spectral data. However, increasing the degree also results in higher 

computational complexity, which may affect model efficiency when working with 

large datasets. 

One of the primary advantages of the polynomial kernel is its ability to map data 

into higher-dimensional spaces, making it particularly effective for datasets with 

moderate non-linearity. It also provides greater control over decision boundary 

flexibility, enabling researchers to fine-tune the degree of the polynomial to optimize 

model performance. Additionally, the polynomial kernel performs well for medium-

dimensional datasets, balancing computational efficiency with classification 

accuracy. Compared to the linear kernel, which is limited to simple data distributions, 

the polynomial kernel extends classification capabilities, offering more accurate 

predictions in cases where data follows curved separations rather than straight-line 

boundaries. 

Despite its strengths, the polynomial kernel has some limitations. One of its 

main drawbacks is its high computational demand, especially when using higher-
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degree polynomials. This can lead to longer training times and increased memory 

usage, making it less efficient for large-scale applications. Furthermore, it may suffer 

from overfitting, particularly when the polynomial degree is excessively high, 

causing the model to fit the training data too closely while reducing generalization on 

unseen data. Lastly, for very high-dimensional datasets, the Radial Basis Function 

(RBF) kernel tends to perform better, as it provides greater adaptability to complex, 

overlapping feature distributions. 

Radial basis function  

The radial basis function (rbf) kernel is a popular choice in Support Vector 

Machine (SVM) models, especially when dealing with non-linear data. Here's a 

deeper dive into its significance: 

The rbf kernel transforms the input space into a higher-dimensional space, 

allowing the SVM to find a linear boundary in this new space. This transformation is 

particularly useful for data that isn't linearly separable in its original form. The rbf 

kernel measures the distance between data points using a Gaussian function, defined 

as: 

𝐾(𝑥, 𝑥′)  = exp(−𝑦||𝑥 − 𝑥′||2) 

Where 𝑥 and 𝑥′ are two data points, and γ′ is a parameter that controls the width 

of the Gaussian function. 

One of the key advantages of the RBF kernel is its ability to capture intricate 

patterns in data, making it particularly useful for applications such as image 

classification, medical diagnostics, and spectral analysis. Unlike the polynomial 

kernel, which requires a predefined degree, the RBF kernel dynamically adapts to the 

dataset, offering greater flexibility in separating non-linearly distributed data. 

Additionally, it performs well in high-dimensional spaces, such as Raman 

spectroscopy datasets, where thousands of features need to be processed efficiently. 

Despite its strengths, the RBF kernel has some limitations. One major drawback 

is its high computational cost, as training models with RBF can be resource-intensive, 

particularly for large datasets. Furthermore, because it operates in infinite-

dimensional space, the decision boundary is less interpretable compared to simpler 

kernel functions like linear or polynomial. Additionally, selecting an appropriate 

gamma value is critical; incorrect tuning can either lead to overfitting or underfitting, 

affecting classification accuracy. 
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In this study, the RBF kernel was applied to classify Raman spectral data, 

demonstrating strong performance in handling signal variations and spectral shifts. 

By optimizing the gamma parameter, the model successfully balanced classification 

accuracy and generalization ability, making it a reliable choice for biomedical signal 

processing. Compared to linear and polynomial kernels, the RBF kernel provided 

greater adaptability to subtle spectral differences, reinforcing its suitability for AI-

driven Raman spectroscopy applications. 

2.5.2 ExtraTreesClassifier 

The ExtraTreesClassifier is an ensemble learning method provided by the 

Scikit-learn library, known for its efficiency in handling various classification and 

regression tasks. This classifier, which stands for "Extremely Randomized Trees," is 

closely related to the Random Forest classifier but introduces greater randomness in 

determining how splits within decision trees are made. Unlike Random Forests, 

where splits are chosen based on the best feature and threshold, the Extra Trees 

classifier randomly selects split points for each feature. This increased randomization 

leads to better generalization, making the model less prone to overfitting, which is a 

common issue in decision tree-based models.[26] 

The Extra Trees classifier builds a forest of unpruned decision trees, with each 

tree trained on a bootstrap sample of the dataset. The model makes predictions by 

aggregating the outputs from multiple trees using majority voting for classification 

tasks and averaging predictions for regression tasks. Since Extra Trees do not prune 

trees, they tend to be highly expressive, capturing complex patterns within datasets. 

However, the additional randomness in feature splits prevents excessive 

memorization of training data, improving model stability when working with unseen 

samples. 

One of the significant advantages of the Extra Trees classifier is its robustness 

against overfitting. By increasing the randomness in feature selection, the model 

reduces its reliance on the training dataset's specific structure, enhancing its ability to 

generalize well across different datasets. This characteristic is particularly beneficial 

for large datasets with high-dimensional features, as it mitigates the risk of overfitting 

complex relationships while maintaining accurate predictions. Moreover, the Extra 

Trees classifier does not rely on bootstrap sampling, which distinguishes it from 

Random Forests by allowing for faster computation times during training. 
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In addition to classification and regression tasks, Extra Trees also provides 

feature importance estimation, offering insights into which attributes contribute most 

to the model's predictions. This capability is especially useful for data scientists and 

researchers, as it enables them to prioritize relevant variables, streamline feature 

selection, and optimize model performance. By analyzing feature rankings, users can 

identify key predictors that influence classification outcomes, leading to more 

interpretable machine learning models. 

To utilize the Extra Trees classifier, users need to initialize the model, split data 

into training and testing sets, and train the model using the training data. Once the 

model has been trained, predictions can be made on the test data, and various 

performance metrics such as accuracy, precision, recall, and F1-score can be 

evaluated to assess model effectiveness. Fine-tuning parameters, such as the number 

of estimators, max depth, and minimum split criteria, allows users to optimize 

classification results based on the complexity of the dataset. 

The ExtraTreesClassifier has found applications in many fields, including 

biomedical diagnostics, financial fraud detection, image recognition, and natural 

language processing (NLP). Its ability to handle large datasets efficiently, reduce 

overfitting, and improve generalization performance makes it a highly versatile tool 

for machine learning applications. Whether dealing with high-dimensional genomic 

data, sentiment analysis, or anomaly detection, Extra Trees provides a robust solution 

for tackling complex classification challenges. 

For this experiment, both Support Vector Machines (SVM) and 

ExtraTreesClassifier were chosen due to their complementary advantages in 

classification tasks. SVM excels in high-dimensional spaces, making it well-suited 

for datasets where the number of features exceeds the number of samples. It is 

versatile, handling both linear and non-linear classification using different kernel 

functions, such as linear, polynomial, RBF, and sigmoid kernels. Additionally, SVM 

is robust, as it reduces the risk of overfitting by maximizing the margin between 

classes, and it employs the kernel trick to model complex, non-linear decision 

boundaries, ensuring clear margins of separation that enhance interpretability and 

generalizability. 

On the other hand, ExtraTreesClassifier is an ensemble learning method that 

builds multiple randomized decision trees to improve classification accuracy. Unlike 

SVM, which relies on hyperplane-based separation, ExtraTreesClassifier determines 
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split points randomly, improving computational efficiency and reducing overfitting. 

It is particularly useful for high-dimensional and noisy datasets, as it enhances 

generalization through extreme randomness in split selection. Additionally, 

ExtraTreesClassifier ranks feature importance, helping to identify key spectral 

characteristics that influence classification accuracy. 

By implementing both SVM and ExtraTreesClassifier separately, this study 

evaluated the effects of different preprocessing techniques on classification 

performance. While SVM demonstrated improvements with polynomial regression 

(PenPoly) and intensity modulation processing (IMP), ExtraTreesClassifier exhibited 

stable accuracy gains, with IMP proving most effective in enhancing signal clarity. 

This dual approach ensures a comprehensive evaluation of AI-driven Raman spectral 

classification, reinforcing the importance of preprocessing techniques in optimizing 

model performance. 

2.5.3 1D-CNN 

A one-dimensional convolutional neural network (1D-CNN) is a specialized 

deep learning architecture designed to extract meaningful patterns from sequential 

data whether that’s a time series, an audio waveform, or a Raman spectrum. Instead 

of connecting every input feature to every neuron in the next layer (as in a fully 

connected network), a 1D-CNN applies small, trainable filters that “slide” along the 

input. Each filter learns to recognize a local pattern such as a narrow peak shape or a 

sudden rise in intensity wherever it occurs in the sequence. Because the same filter 

weights are reused at every position, the network naturally gains translation 

invariance: once it has learned what a spectral peak looks like, it will detect that peak 

whether it sits at 500 cm⁻¹ or 1,200 cm⁻¹.[52] 

Stacking multiple convolutional layers allows the network to build a hierarchy 

of features. In the earliest layers, filters might pick up on very simple motifs tiny 

bumps or dips in the spectrum while deeper layers combine those motifs into more 

complex signatures, such as doublet peaks or characteristic shoulders. Between 

convolutional stages, pooling operations (for example, max-pooling) reduce the 

length of the feature maps by summarizing local neighborhoods, which not only 

decreases computation but also makes the model robust to slight shifts in peak 

position or noise fluctuations typical of experimental data. [53] 

Once the convolutional and pooling stages have distilled the raw input into rich, 

position-invariant feature maps, a 1D-CNN flattens these maps into a single vector 
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and passes them through one or more dense (fully connected) layers. These final 

layers act as a high-level decoder, learning how to weigh and combine the 

automatically extracted features to produce the final output such as a binary label for 

material A versus material B. Because the dense layers see the entire spectrum’s 

worth of features at once, they can capture global relationships as well as the local 

details identified by the convolutional filters. 

Designing an effective 1D-CNN for Raman spectral classification involves 

carefully choosing hyperparameters: the size of each convolutional kernel, the 

number of filters per layer, the depth of the network, and the use of regularization 

methods (dropout, L2 weight decay, and early stopping) to guard against overfitting. 

Smaller kernels (e.g., length 3–5) excel at detecting fine spectral peaks, while larger 

ones can capture broader patterns or overlapping features. A shallow network two or 

three convolutional blocks often suffices for small datasets, ensuring that the model 

is expressive enough without demanding prohibitively large amounts of data. 

In this project I employed simple, “vanilla” 1D convolutional kernels of fixed 

length 5 in every Conv1D layer. Concretely, each convolutional block slides a 

learnable vector of five weights along the wavenumber axis (with stride=1 and no 

dilation), performing a dot-product over each contiguous window of five spectral 

intensities. 

Modern advances in 1D-CNN design include the addition of residual 

connections, which help with training deeper networks by allowing gradients to flow 

more easily, and dilated convolutions, which expand the network’s receptive field 

without adding extra parameters. Layer or batch normalization can accelerate 

convergence and stabilize training, while attention mechanisms can further improve 

the network’s focus on the most informative spectral regions. Altogether, these 

innovations make 1D-CNNs a powerful, end-to-end alternative to manual feature 

engineering, automatically learning the optimal spectral descriptors for classification 

tasks. [54] 

One of the most compelling advantages of 1D Convolutional Neural Networks 

(1D-CNNs) is their ability to efficiently process and learn from sequential data while 

maintaining computational speed and scalability. These models are especially 

powerful when working with time-dependent datasets, where the sequence and order 

of the data points carry important meaning such as electrocardiogram (ECG) signals, 

temperature readings, or word embeddings in text. Thanks to their architectural 
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design, 1D-CNNs can detect patterns, trends, or anomalies across input sequences 

without needing to examine each element in strict isolation. 

Compared to other sequence models like Recurrent Neural Networks (RNNs) 

or LSTMs, which process input one step at a time while maintaining memory across 

steps, 1D-CNNs operate using a more parallel approach. Rather than iterating through 

the sequence step-by-step, CNNs apply multiple filters across small, sliding windows 

of the data. This parallelism makes them significantly faster during both training and 

inference, especially on longer sequences. Despite this difference in strategy, 1D-

CNNs are still capable of identifying local dependencies and learning meaningful 

temporal representations often with fewer parameters and better generalization when 

data is limited or noisy. 

This unique balance of speed and performance makes 1D-CNNs a popular 

choice across a wide range of real-world applications. In speech recognition, they can 

pick up phonetic patterns and transitions between sounds; in medical diagnostics, 

they help analyze heartbeats, brain waves, or muscle signals; in financial modeling, 

they can detect recurring trends in stock prices or economic indicators. They're also 

used in anomaly detection systems, industrial equipment monitoring, music genre 

classification, and even DNA sequence analysis. 

What makes them particularly attractive is not just their efficiency, but also their 

interpretability. The learned filters in 1D-CNNs can often be visualized to understand 

what type of patterns the model is focusing on such as sharp spikes, periodic curves, 

or sustained rises and falls. This opens up a degree of transparency that helps 

researchers and practitioners trust the insights generated by the model. 

The reason I choose 1D-CNN over others ANN models in this Raman 

spectroscopy project because its core operation sliding small, learnable filters across 

the wavenumber axis directly mirrors the way spectral peaks and shoulders manifest 

locally in the data. Instead of relying on handcrafted features or manual peak picking, 

the Conv1D layers automatically learn which combinations of neighboring intensities 

signal a meaningful vibrational mode. Because the same filters scan every position, 

the network gains translation invariance: it recognizes a characteristic peak shape 

regardless of whether it appears at 500 cm⁻¹ or 1 200 cm⁻¹. This built-in shift-

tolerance is especially valuable for experimental spectra, where peak positions can 

jitter slightly from sample to sample or due to instrument drift. 
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Moreover, by stacking multiple convolutional blocks, the 1D-CNN builds a 

hierarchy of increasingly abstract features early layers pick up on simple motifs like 

narrow bumps or dips, while deeper layers combine these into composite indicators 

(e.g., doublet peaks or broad shoulders). This hierarchical learning mirrors the multi-

scale nature of Raman spectra, where both fine-scale peak shapes and broader 

baseline trends carry chemical information. Coupled with moderate polynomial 

baseline corrections and dropout-based regularization, the network learns rich, robust 

representations without overfitting even on a small dataset. 
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Chapter 3: METHODOLOGY 

3.1 Integrated Development Environment 

3.1.1 Jupyter Notebook 

Jupyter Notebook is an open-source web application that allows users to create 

and share documents containing live code, equations, visualizations, and narrative 

text. Its versatility and ease of use make it a popular tool in data science, scientific 

computing, machine learning, and academic research. One of its key features is 

interactive coding, which supports real-time data analysis and visualization, enabling 

users to write and execute code interactively. Jupyter Notebook supports multiple 

programming languages, with primary support for Python, and extendable to R, Julia, 

and other languages via "kernels." The platform integrates seamlessly with libraries 

like Matplotlib, Seaborn, and Plotly, facilitating the creation and display of 

visualizations within the notebook. Moreover, Jupyter Notebook supports rich text 

formatting, allowing users to include formatted text, equations (using LaTeX), 

images, and links, making it ideal for detailed reports and documentation. The ability 

to share notebooks via email, GitHub, or convert them to formats like HTML, PDF, 

and slides, further promotes collaboration and reproducibility. 

Jupyter Notebook is commonly used for a variety of purposes, including data 

analysis and exploration, where users can analyze datasets, perform statistical 

calculations, and visualize results. In machine learning, it is utilized to develop, train, 

and evaluate models. For educational purposes, Jupyter Notebook serves as a 

platform for creating interactive teaching materials and tutorials. It is also widely used 

in research documentation, allowing researchers to document their processes and 

findings in a reproducible format. Overall, Jupyter Notebook is an indispensable tool 

for data-intensive fields, providing a flexible and interactive environment for coding 

and data analysis. [29] 

3.1.2 Google Colab 

Google Colab, or Google Colaboratory, is a cloud-based platform that provides 

an environment similar to Jupyter Notebook for running Python code. It is widely 

used by data scientists, machine learning enthusiasts, and researchers due to its 

accessibility and robust features. One of its standout benefits is the availability of free 

GPUs and TPUs, which makes it ideal for computationally intensive tasks like deep 

learning. Additionally, since it runs entirely on the cloud, users don't need to install 

Python or libraries locally, saving time and effort. 
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Another key advantage of Google Colab is its collaboration features, which 

resemble those of Google Docs. Multiple users can work on the same notebook 

simultaneously, fostering teamwork and productivity. It integrates seamlessly with 

Google Drive for saving and sharing notebooks and comes pre-installed with popular 

libraries such as NumPy, pandas, TensorFlow, and PyTorch. Users can also install 

additional libraries or connect to a local runtime as needed, making it a flexible and 

powerful tool for various projects. 

3.1.3 JetBrains Datalore 

JetBrains Datalore is a powerful collaborative data science platform that 

brings together the versatility of Jupyter-compatible notebooks with smart coding 

assistance and team collaboration features. It supports languages such as Python, R, 

Scala, and Kotlin, while offering tools like code auto-completion, quick fixes, and 

built-in documentation to boost productivity. For data integration, Datalore allows 

users to connect to databases, use SQL cells for querying, and integrate with cloud 

storage services like Amazon S3 and Google Cloud Storage. 

The platform excels in collaboration, enabling real-time teamwork on 

notebooks with customizable access levels. Interactive reporting is another key 

feature, allowing users to transform notebooks into polished, shareable reports with 

hidden code cells. Additionally, it supports scheduling and automation for repetitive 

tasks, offers custom environments via pip, Conda, or Docker images, and provides an 

on-premises hosting option for added security. These features make Datalore a 

compelling choice for both individual and organizational use cases. 

For this experiment, Jupyter was picked for its Versatilities and user-friendly 

platform, perfect for conducting experiments. Its interactive notebooks allow you to 

write, test, and debug code in manageable chunks, making the process seamless and 

efficient. Plus, its ability to combine code, visualizations, and explanatory text in one 

place is ideal for documenting your experiment clearly. 

3.1.4 StandardScaler 

StandardScaler is a preprocessing tool in machine learning, specifically part of 

the scikit-learn library, that standardizes features by removing the mean and scaling 

to unit variance. Here's a deeper dive into its significance and functionality: 

StandardScaler transforms the data in such a way that each feature's mean is 

centered at 0 and the standard deviation is scaled to 1. This is done using the formula: 

𝑧 =  
𝑥 −  𝜇

𝜎
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where x is the original feature value, μ is the mean of the feature, and σ is the 

standard deviation of the feature. 

Key Benefits: 

1. Normalization: Standardizing features ensures that they are on the same 

scale, which is especially important for algorithms sensitive to the scale of 

data, like SVMs with rbf kernels. 

2. Improved Performance: It can lead to faster convergence during training 

and better overall performance of the model. 

3. Handling Outliers: While it doesn't eliminate outliers, it can mitigate their 

impact, since the data is rescaled relative to the standard deviation. 

Use Case: 

When you have features with different units or scales, StandardScaler helps by 

ensuring that each feature contributes equally to the distance metrics used by machine 

learning algorithms, thereby improving the robustness and accuracy of the model. 

In the context of the SVM model setup described earlier, StandardScaler is used 

to preprocess the Raman spectroscopy data, ensuring all features have a mean of 0 

and a standard deviation of 1, leading to more consistent and reliable classification 

performance. 

3.1.5 Penalized poly 

Penalized poly generally refers to penalized polynomial regression, which 

incorporates a penalty term into the polynomial regression model to prevent 

overfitting. This advanced technique combines polynomial regression with 

regularization methods such as Lasso (L1), Ridge (L2), or Elastic Net, which merges 

both L1 and L2 regularizations. In penalized polynomial regression, polynomial 

features of the input data are generated up to a specified degree, expanding the feature 

set to capture non-linear relationships in the data. 

The regularization term is a crucial component added to the model to shrink the 

coefficients and reduce its complexity. Lasso regularization applies an L1 penalty, 

encouraging sparsity by shrinking some coefficients to zero, effectively performing 

feature selection. Ridge regularization uses an L2 penalty, which penalizes the sum 

of the squared coefficients, resulting in smaller, more evenly distributed coefficients. 

Elastic Net combines both L1 and L2 penalties, balancing between feature selection 

and coefficient shrinkage to enhance the model's flexibility and performance. 
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The benefits of penalized polynomial regression are manifold. By incorporating 

a regularization term, the model prevents overfitting, ensuring it does not memorize 

the noise in the training data. This leads to better generalization and improved 

performance on new, unseen data. Additionally, regularization improves the 

interpretability of the model by selecting the most relevant features and shrinking the 

less important ones. This feature selection process can reveal insights into the 

underlying data structure and the relationships between variables. 

Penalized polynomial regression is particularly useful in scenarios where the 

data exhibits complex, non-linear relationships that cannot be captured by simple 

linear models. By generating polynomial features, the model can fit a wider range of 

patterns and interactions between variables. 

3.2 Data acquisition  

A Raman spectrometer is comprised of four key components that work together 

to measure the Raman effect: 

• Laser: This is the light source that emits a focused beam of 

monochromatic light. When this laser light interacts with the sample, it 

induces the Raman scattering effect. The laser is a critical component 

as it provides the necessary energy to excite the molecules within the 

sample. 

• Sample Holding Chamber: This component is designed to securely 

hold the sample during the measurement process. The sample can be in 

various forms, such as solid, liquid, or gas. The chamber is often 

equipped with mechanisms to ensure the precise positioning and 

stability of the sample for accurate measurements. 

• Spectrometer Chamber Using Grating: After the laser light interacts 

with the sample, the scattered light, including the Raman scattered 

photons, is directed into the spectrometer chamber. Here, a diffraction 

grating separates the light into its component wavelengths (or 

wavenumbers). This dispersion allows for the simultaneous 

measurement of a broad spectrum of wavelengths, which is essential 

for identifying the unique Raman shifts associated with the sample's 

molecular vibrations. 

• Amplification System and Collection: The dispersed light is then 

collected and amplified to enhance the signal strength for better 
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detection and analysis. This amplified signal is processed to remove 

photons that have been displaced by the Raman effect using notch or 

edge filters. These filters ensure that only the desired Raman scattered 

photons are analyzed, improving the accuracy of the measurements. 

Photons that have been displaced by the Raman effect are meticulously filtered 

out using notch or edge filters. These filtered photons are then channeled into the 

grating spectrometer, where the wavenumbers of interest are measured 

simultaneously across the entire spectrum. This comprehensive measurement allows 

for the detailed analysis of the sample's molecular composition, providing valuable 

insights into its chemical and physical properties. 

In order to carry out my project, I needed to simulate blood sugar levels. 

However, I encountered a challenge due to the absence of genuine data from the 

human body. Collecting data from human volunteers requires consent and medical 

expert review. To circumvent these complications, I opted for a practical approach 

by using a diluted glucose solution as a temporary measure. This method will suffice 

until a more robust solution can be developed to realistically address the data issues. 

The dataset used in our experiments were collected from a Raman spectrometer 

which was provided by my supervisor. All of the data from the in this experiment 

were taken at two stages from volunteers. The dataset used for the machine learning 

model contains three labels: 

1. Before consumed food: Represents samples from patients who haven't 

consumed any food. 

2. After consumed food: Represents samples from patients who have 

consumed food. 

In total, we got an CSV file with the data from 20 Raman spectroscopic scans 

acquired from the left thumbnail. These labels are essential for training the Support 

Vector Machine (SVM) model to differentiate between different levels of blood 

glucose. The Raman spectroscopy samples corresponding to these labels provide the 

input data for the machine learning model. By analyzing the Raman spectra, the 

model learns to identify patterns and correlations associated with each label. 

By using these labels, the machine learning model can accurately predict the 

blood glucose levels of patients based on their Raman spectroscopy samples, 

providing a valuable tool for diabetes classification and management. 
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Figure 3: Schematic diagram of Raman spectrometer setup using CCD detection 

module Excitation laser (Andrew Downes, 2024) 

3.3 Raman spectroscopy 

Professor C.V. Raman, in collaboration with K.S. Krishnan, was the pioneering 

force behind the discovery of the Raman effect, with their initial publication marking 

a significant milestone in the field of spectroscopy [40]. This groundbreaking 

technique remains one of the most adaptable methods for analyzing a diverse range 

of evidence, from chemical compounds to biological materials.  

Raman spectroscopy's versatility and non-invasive nature make it invaluable in 

various fields, including chemistry, physics, biology, and medicine. It provides 

detailed molecular information, allowing for early disease diagnosis, monitoring 

disease progression, and environmental analysis. The legacy of Raman and 

Krishnan's work underscores the importance of innovation and collaboration in 

scientific research, paving the way for future advancements in the realm of 

spectroscopy. [41] 

 

https://www.researchgate.net/profile/Andrew-Downes-3?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
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Figure 4: Sir Chandrasekhara Venkata Raman (nobelprize, 2024) 

This technique surpasses many constraints of current spectroscopic methods 

and is valuable for quantitative and qualitative analysis. Quantitative analysis 

measures the intensity and frequency of scattered radiations, providing detailed 

molecular composition information. This is crucial in fields like chemistry and 

biochemistry, where precise measurements are needed. Qualitative analysis identifies 

specific molecules or functional groups by examining Raman shifts corresponding to 

molecular vibrations. This method can identify unknown compounds, verify 

mixtures, and monitor molecular structure changes, making it a versatile and 

powerful tool in research and industry [42]. 

Raman spectroscopy, based on the Raman effect, is a scattering technique 

wherein monochromatic laser light interacts with molecules in a sample, producing 

scattered light. The wavelength of this Raman scattered light is determined by the 

excitation light's wavelength. Consequently, when comparing spectra obtained with 

different lasers, the Raman scatter wavelength is standardized to an artificial value. 

This process involves shifting the excitation wavelength away from the Raman 

scattering point, resulting in what is known as a Raman shift. 

The wavelength of the excitation light determines the wavelength of the Raman 

scattered light. Therefore, when spectra are recorded using different lasers, the 

Raman scatter wavelength is standardized to an artificial value. Essentially, the 
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excitation wavelength is shifted away from the Raman scattering point, resulting in 

what is known as a Raman shift. 

Raman shifts are typically expressed in wavenumbers, which are units of 

inverse length directly related to energy. In most cases, the wavenumber in Raman 

spectra is denoted in inverse centimeters (cm⁻¹). This unit is preferred because it 

provides a direct correlation to the energy levels involved in the scattering process. 

For practical purposes, the computation of wavenumbers in Raman spectra can 

be explicitly scaled for unit conversion to nanometers (nm). This flexibility allows 

researchers to compare and analyze data collected using different laser sources and 

conditions. 

By using wavenumbers, scientists can more easily interpret and compare Raman 

spectra, regardless of the specific laser wavelengths employed. This standardization 

is crucial for ensuring consistency and accuracy in Raman spectroscopic analysis, 

facilitating the identification and characterization of various molecular compounds 

and structures. 

3.4 Fluorescence background subtraction 

Fluorescence interference in Raman spectroscopy can arise due to two main 

factors: molecule interference and sample contamination. Molecule interference 

occurs when high-energy photons are absorbed, causing molecules to be excited to a 

higher electronic state. As these molecules return to a lower energy state, they emit 

fluorescence light. On the other hand, sample contamination can introduce foreign 

substances that fluoresce under the excitation light. 

Unlike fluorescence, Raman shifts are independent of the wavelength, making 

them distinct in this regard. However, the occurrence of fluorescence is significantly 

influenced by the excitation wavelength used during the Raman spectroscopy 

process. This distinction between Raman shifts and fluorescence emission is crucial 

for accurate spectroscopic analysis, as it helps differentiate between the two 

phenomena and mitigates interference. 

Raman scattering and fluorescence emission can compete when the excitation 

laser energy is near the electronic transition energy of the material. Fluorescence 

background is amplified by excitation sources with higher green or red intensities, 

such as visible lasers at 514 nm or 633 nm. Conversely, near-infrared lasers, such as 

those operating at 785 nm or 1064 nm, lack the energy to excite molecules to a higher 
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electronic state or to remove fluorescing molecules in the material, resulting in a 

reduced or eliminated fluorescence effect [43]. 

Numerous polynomial fitting algorithms were examined to eliminate 

background fluorescence in the original signal. To maintain data clarity, the Improved 

Modified Polynomial (IMP) and penalized polynomial (penalized_poly) fitting 

method was both employed for the experiment. This method has proven effective in 

recent investigations due to its low signal-to-noise ratio. The pure Raman spectrum 

is calculated by subtracting the corrected polynomial from the original Raman spectra 

and then summing the resulting values. 

3.5 Machine Learning model selection 

To achieve the research goal of automating diabetes classification using Raman 

spectroscopy samples, a machine learning model is employed to differentiate between 

diabetic and non-diabetic patients. According to [45], the linearity of the relationship 

between Raman intensity at specific wavelengths can be used to determine blood 

glucose levels. However, due to variations in environmental settings and the nature 

of the subjects, a fixed wavenumber or explicit function for interpretation cannot be 

used, as it may lead to prediction errors for new input samples. Consequently, a broad 

range of wavenumbers in Raman spectra should be interpreted simultaneously. This 

demonstrates the advantages of machine learning models, which can precisely predict 

outcomes based on implicit correlations from high-dimensional samples, involving 

multiple Raman shift interpretations. 

Before feeding the data into machine learning models, the fluorescence 

subtraction method is employed as a data preprocessing step, taking into account the 

inherent characteristics of Raman spectroscopy. This process aims to eliminate 

visible fluorescence signals from the dataset, which could otherwise introduce 

significant variance at certain wavelengths and lead to prediction bias if not correctly 

addressed.  

After the fluorescence subtraction method was employed to remove visible 

fluorescence signals, the data was shuffled. This ensures that it is randomized, helping 

to prevent any biases during the training of the machine learning models. This step is 

crucial for enhancing the robustness and generalizability of the models, ensuring that 

they can accurately differentiate between the three test subject stages based on the 

processed Raman spectroscopy samples. The three stages include patients who have 

not eaten, patients who have consumed one tea cup of sugar water, and patients who 
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have consumed two tea cups of sugar water. By shuffling the data, the machine 

learning model can more effectively learn and predict the different stages, leading to 

more reliable and accurate results. 

The Support Vector Machine (SVM) model is then set up using the radial basis 

function (rbf) kernel, a popular choice due to its ability to handle non-linear 

relationships effectively. Additionally, the data is scaled using StandardScaler, which 

standardizes the features by removing the mean and scaling to unit variance. This 

preprocessing step is crucial because it ensures that all features contribute equally to 

the model, preventing features with larger scales from disproportionately influencing 

the results. 

To evaluate the effectiveness of the SVM model, performance metrics such as 

accuracy, sensitivity, and specificity are initialized. These metrics provide a 

comprehensive assessment of the model's classification abilities. Accuracy measures 

the overall correctness of the model's predictions, while sensitivity (also known as 

recall) evaluates the model's ability to correctly identify positive cases, such as 

identifying patients who consumed one or two tea cups of sugar water. Specificity 

assesses the model's capability to correctly identify negative cases, such as patients 

who have not consumed any sugar water. By tracking these metrics, researchers can 

gain insights into the model's strengths and weaknesses, ensuring that it performs well 

across different aspects of classification. 

Furthermore, the use of repeated stratified k-fold cross-validation ensures that 

the model is trained and tested on multiple subsets of the data, providing a robust 

evaluation of its performance. This approach helps to minimize bias and variance, 

offering a more reliable estimate of the model's generalizability to new, unseen data. 

In summary, the combination of SVM with the rbf kernel, data scaling, and 

comprehensive performance metrics, along with cross-validation, creates a robust 

framework for developing an accurate and reliable model for differentiating between 

patients who have not eaten, patients who have consumed one tea cup of sugar water, 

and patients who have consumed two tea cups of sugar water based on Raman 

spectroscopy samples. Extra Tree Classifier was also chosen to have a comparison 

between the two models. 

3.6 Experimental setups 

To conduct the experiment, the initial step involves preparing the data for 

machine learning. The raw dataset comprises 20 samples, with 10 samples collected 
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before the volunteers had breakfast and 10 samples collected after breakfast. The 

dataset is labeled accordingly: 0 for the samples taken before breakfast and 1 for those 

taken after breakfast. 

The dataset used in this research consists of Raman spectral data, capturing the 

interaction between laser light and biological molecules. Each data sample contains 

a series of intensity values measured at different wavelengths, forming spectral 

curves that indicate chemical composition. These spectral signals reflect glucose 

concentration variations, enabling classification between different glucose levels or 

between diabetic and non-diabetic subjects. The dataset is high-dimensional, meaning 

it contains multiple spectral variables, each contributing unique information about 

molecular vibrations. Since Raman spectroscopy relies on detecting subtle shifts in 

scattered light, the dataset inherently includes natural fluctuations in intensity, which 

need careful handling for accurate interpretation. Furthermore, the spectral 

characteristics may vary based on environmental conditions, measurement settings, 

and biological differences, influencing the distribution of intensity values across 

samples. The dataset provides a foundation for machine learning models to identify 

patterns, correlations, and diagnostic insights, making it a valuable resource for non-

invasive medical analysis using AI-driven spectral classification. 

 

Figure 5: raw data 

The dataset used in this research consists of 20 rows and 1901 columns, 

representing spectral data obtained from Raman spectroscopy analysis. Each row 

corresponds to an individual spectral sample, potentially collected from different 

subjects or experimental conditions. The 1901 columns contain spectral attributes, 
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with each column representing the intensity of Raman signals at a specific wave 

number, forming a detailed spectral profile that provides insights into molecular 

vibrations and chemical composition. 

The raw data collected from the human body is saved in CSV format, with each 

measurement containing two primary columns: the wave number (x value) in shift 

Raman (cm⁻¹) and the intensity (y value) of the Raman signal at each wave number. 

This spectral intensity data helps detect and analyze specific molecular vibrations, 

providing crucial information about the presence and concentration of biological 

molecules. The original dataset records wave numbers ranging from 400 to 2300 

cm⁻¹, but for the processed dataset, only wave numbers between 800 cm⁻¹ and 1800 

cm⁻¹ are considered. This specific range contains vibrational bands associated with 

key chemical functional groups in biological molecules such as proteins, lipids, 

nucleic acids, and carbohydrates, making it particularly useful for investigating 

biological tissue structure and chemical composition. 

Given the high-dimensional nature of the dataset, preprocessing techniques are 

essential for improving classification accuracy. The spectral data’s complex structure 

suggests that machine learning models can be used to classify glucose concentration 

levels and analyze biochemical differences in diabetic versus non-diabetic samples. 

This research focuses on applying Support Vector Machines (SVM) and 

ExtraTreesClassifier to effectively process and classify these spectral variations, 

ensuring a robust approach to AI-driven Raman Spectroscopy analysis. 
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Figure 6: parts of the raw data that was cut from 400 to 2300 

After processing, the dataset is labeled with 0 and 1 for machine learning 

analysis. Labels of 0 and 1 correspond to measurements taken before and after the 

condition noted above. This labeling helps in comparing the effectiveness of noise 

reduction techniques and making subsequent improvements. 
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Figure 7: label 

3.7 Polynomial Fitting Method for baseline determination 

The Polynomial Fitting Method is an essential approach for baseline 

determination in spectral analysis, particularly in Raman spectroscopy, where 

unwanted variations in intensity can interfere with the accurate identification of 

molecular structures. Baseline distortions in spectral data often arise due to 

instrumental noise, fluorescence interference, and environmental factors, 

necessitating robust correction techniques to refine spectral accuracy. Polynomial 

fitting models the baseline as a smooth polynomial function, which is subtracted from 

the raw spectral data to remove background signals while preserving the integrity of 

significant spectral peaks. 
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A polynomial can be expressed as follows: 

𝑝(𝑥) = 𝛽0𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑚𝑥𝑚 = ∑ 𝛽𝑗𝑥𝑗

𝑚

𝑗=0

 

where 𝛽 is the array of coefficients for the polynomial. 

For regular polynomial fitting, the polynomial coefficients that best fit data are 

gotten from minimizing the least-squares: 

∑  

𝑁

𝑖

𝑤𝑖
2(𝑦𝑖 − 𝑝(𝑥𝑖))2 

where:  

𝑦𝑖 and 𝑥𝑖 are the measured data,  

𝑝(𝑥𝑖) is the polynomial estimate at 𝑥𝑖,  

𝑤𝑖 is the weighting. 

𝑁 is the number of data points 

The primary advantage of polynomial fitting is its simplicity and effectiveness. 

It is faster than other methods and has been widely used for in vivo-biomedical 

Raman applications. The weakness of polynomial fitting is its dependence on the 

spectral fitting range and the chosen polynomial order. [46] 

The advantages of polynomial fitting for baseline correction include its ability 

to generate a smooth and continuous correction curve, making it highly effective in 

fluorescence removal from spectral signals. Additionally, the method allows for fine-

tuning of the polynomial degree, ensuring that important spectral features are retained 

while irrelevant background noise is eliminated. However, selecting the optimal 

polynomial degree is a challenge, as an inadequately fitted polynomial can either fail 

to remove baseline distortions or excessively alter the spectral structure. Polynomial 

fitting may also be sensitive to noise, requiring additional smoothing techniques to 

refine corrections. Furthermore, higher-degree polynomial fitting can introduce 

computational complexity, particularly when applied to large spectral datasets. 

In Raman spectroscopy, polynomial fitting plays a vital role in refining spectral 

intensity data, ensuring accurate peak detection for biochemical classification. 

Advanced modifications of the method, such as piecewise polynomial fitting (PPF), 

divide spectral data into smaller sections, allowing for localized baseline corrections. 

Additionally, adaptive polynomial fitting techniques integrate optimization 
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algorithms to dynamically refine polynomial parameters, enhancing baseline 

accuracy across varied spectral conditions. 

To improve background correction, I use the penalized polynomial regression 

and Improved Modified Polynomial (IMP) method to compare the results of each 

method. The program starts with a single polynomial fitting P(v)P(v) using the raw 

Raman signal O(v)O(v), where v is the Raman shift in cm⁻¹. The residual R(v)R(v) 

and its standard deviation (DEV) are then calculated as follows: 

𝑅(𝑣) = 𝑂(𝑣) − 𝑃(𝑣) 

And 

𝐷𝐸𝑉 = √
(𝑅(𝑣1) − 𝑅̅)2 + (𝑅(𝑣2) − 𝑅̅)2 + ⋯ + (𝑅(𝑣𝑛) − 𝑅̅)2 

𝑛
 

where nn represents the number of data points on the spectral curve, and 

𝑅̅  =  √
𝑅(𝑣1)  +  𝑅(𝑣2)  +  𝑅(𝑣3)  +  ⋯ +  𝑅(𝑣𝑛)

𝑛
 

This approach ensures a more accurate baseline correction by accounting for the 

residuals and their variations. 

 

 

Figure 8: denoised data after combined all of the denoised CSV files 

After the data was transformed like in Figure 5, each of 20 CSV file will go 

through penalized polynomial regression for data denoising and signal enhancing, 

result in 20 CSV files like in figure 8, then the data is combined and swap from 

columns to rows like in figure 7. 
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Figure 9: denoised data 

3.8 Jupyter setup 

To implement the algorithm for determining baselines of the provided data in 

my project, the first step involves installing and importing the Pybaselines library. 

This is the core library of my project, offering solutions for data calculation and 

preprocessing. Additionally, I have incorporated the numpy library, which provides 

functions and data structures for working with arrays and matrices, enhancing 

calculation efficiency. 

I'm also using the matplotlib.pyplot library to create high-quality graphs and 

charts from the data. Furthermore, I utilize the csv library to read and write CSV files, 
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a widely-used format for tabular data, enabling easy reading and writing of data. 

Finally, the os library is employed to interact with the operating system, allowing 

operations such as creating, deleting, or moving files, among others. 

 

Figure 10: library for penalized polynomial regression and graph draw 

After that I start by retrieving the CSV files that was cut by scanning the folder 

which the CSV files are on. 

 

Figure 11: GetDataFromFileCSV function 

This function reads data from a CSV file and returns either the x-axis or y-axis 

values, depending on the axit parameter. It processes the file, skipping invalid entries 

and ensuring that the data is properly parsed into integer and float types. The function 

work in this order: 
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1) Initialization: The function initializes two empty lists, datay and datax, to 

store the y-axis and x-axis values. 

2) Opening the File: It opens the specified CSV file using the with open 

statement, ensuring the file is properly closed after reading. 

3) Reading the File: The csv.reader is used to read the CSV file, and the 

function iterates over each row in the file. 

4) Data Parsing: For each row, if the first element is not empty, the function 

attempts to convert it to an integer and append it to datax. It also converts 

the second element to a float and appends it to datay. If a ValueError occurs 

during conversion, the function skips the invalid entry and prints a 

message. 

5) Returning Data: Depending on the value of the axit parameter ('x' or 'y'), 

the function returns the corresponding list of values. 

This ensures that the data is read and parsed correctly from the CSV file, ready 

for further processing or analysis. 

Next, I created an additional function called Draw_Graph_Raw to display signal 

line graphs, which will help in observing changes before and after signal processing. 

This function takes the shift Raman parameter values and intensities from the signal 

and labels each component in the graph, including axis names, graph names, graph 

colors, and values at points. 
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Figure 12: fuctions that draw graphs 

Draw_Graph_Raw, is designed to plot a graph using the given x-axis and y-axis 

data. Here's a breakdown of how the function works: 

Create a New Figure: The function starts by creating a new figure using 

plt.figure() to ensure that each call to the function generates a new plot. 

Plot the Data: The plt.plot function is used to plot the data, with x_axit and 

y_axit representing the x-axis and y-axis values, respectively. The color parameter 

sets the line color, and label is used to create a label for the legend, combining the 

text "Processed signal" with the line_name parameter. 

1) Set Labels: The plt.xlabel and plt.ylabel functions set the labels for the x-

axis and y-axis, respectively, using the x_label and y_label parameters. 

2) Set Title: The plt.title function sets the graph's title using the graph_name 

parameter. 

3) Custom X-Axis Ticks: The plt.xticks function customizes the x-axis ticks, 

displaying them at intervals of 50 units and rotating them vertically for 

better readability. 

4) Add Legend: The plt.legend function adds a legend to the plot, which 

helps in identifying the plotted line based on the label provided. 

The SaveFlattenData function, similar to the read function, is used to write 

processed data into a CSV file line by line. Instead of searching for lines with data to 
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read, this function finds empty lines to insert the data. When used in conjunction with 

the Autoname function I created, the output becomes a complete CSV file containing 

the processed signal data. 

 

Figure 13: SaveFkattenData Function 

 

This function is designed to save processed data into a CSV file. Here's a step 

by step of what the function does: 

Specify File Location: The function constructs the file path by combining the 

directory (dir) and filename (filename). 

Convert Data to Strings: It converts the datay values to strings and stores them 

in data_convert. However, this step isn't actually used later in the code. 

Combine Data: It creates a list called data that will store the combined datax 

and datay values as sublists. Each sublist represents a row in the CSV file, containing 

the x and y values. 

Writing to CSV: The function opens the specified file in write mode. It then 

uses the csv.writer to write each row from the data list to the CSV file. The newline='' 

parameter ensures that no extra blank lines are added between rows in the CSV file. 

To process noisy signals, the first step involves determining the baseline, which 

is essential for subtracting the background and filtering the noisy signal. In this 

project, I am utilizing the penalized polynomial regression method in conjunction 
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with the algorithm chart provided. This approach ensures that the baseline is 

accurately identified, enabling effective noise reduction and signal enhancement. 

 

Figure 14: Determine signals’ baselines and draw graphs. 

This code effectively processes each file, removes noise by calculating the 

baseline using penalized polynomial regression, and visualizes both the raw and 

baseline-corrected data.  

In this project, my goal was to establish baselines for unprocessed signals using 

polynomial order coefficients ranging from 3 to 16. During testing, I found it 

challenging to manually select the most suitable polynomial order coefficient based 

solely on visual observation of the graph. To address this, I identified specific key 

points within the range and determined the sample baseline for background 

correction. The processed data was then fed into a machine learning model to evaluate 

the outcomes. This approach saved me from manually calculating using linear 

formulas involving weights, standard deviations, and more, which would have been 

quite challenging given the large number of signal samples and the time constraints. 

Ultimately, I chose polynomial orders 3, 7, 12 and 16 for baseline determination 

consideration. 

Here are the results: 
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Figure 15: Determine the signal's baseline using polynomial order of 3 

 

Figure 16: Determine the signal's baseline using polynomial order of 7 
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Figure 17: Determine the signal's baseline using polynomial order of 12 

 

Figure 18: Determine the signal's baseline using polynomial order of 16 

Polynomial orders refer to the degree of a polynomial function, which is 

essentially the highest power of the variable in the equation. In the context of data 
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analysis, such as signal processing or regression models, choosing the right 

polynomial order is crucial. 

• Lower-order polynomials are simpler and can underfit the data by 

missing important details in complex patterns. 

• Higher-order polynomials are more flexible but can lead to 

overfitting, capturing noise instead of the actual trend in the data. 

Finding the optimal polynomial order often requires experimental testing and 

visual or statistical evaluation to strike a balance between underfitting and overfitting. 

There are noticeable differences in baseline values for various polynomial order 

coefficients. A polynomial order of 3 tends to underfit, losing important data, whereas 

a polynomial order of 16 tends to overfit, displaying noisy signals in the baseline. 

Looking at figure 16 and figure 17 we can see that this is the sweet spot (polynomial 

order of 7 to 12) for this project, the baseline is not as underfit as when we choose the 

polynomial order of 3 or being overfitted as when the polynomial order is set to 16.  

However, this does not imply that a polynomial order of 8 to 12 guarantees the best 

result in every scenarios. The next step is to employ machine learning to identify the 

best fit by comparing the processed signal using this baseline with the original data 

and then assessing the achieved results against the desired outcomes. Based on this 

comparison, appropriate adjustments can be made. 

3.9 Data denoising 

After establishing the baseline, the next crucial step in Raman spectral 

preprocessing is background correction, which involves the subtraction of 

background noise from the signal intensity. This noise is identified through the 

baseline and is removed to enhance the clarity of Raman peaks, ensuring accurate 

spectral analysis. Typically, after background correction, the received signal intensity 

decreases, since the subtracted background noise often has a positive intensity. The 

sources of background noise include fluorescence interference, Rayleigh scattering, 

detector artifacts, and environmental distortions, all of which can significantly impact 

the accuracy of spectral classification. Removing these unwanted signals allows the 

Raman spectrum to more effectively represent the true biochemical composition of a 

sample, making it essential for applications in disease diagnostics and molecular 

identification. 

Beyond background correction, data denoising is another vital preprocessing 

step that ensures Raman spectral signals remain free from random fluctuations caused 
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by instrumental limitations or environmental influences. Noise can obscure weak 

spectral features, making it more challenging to extract meaningful information from 

biomedical samples. Denoising techniques focus on reducing spectral variability 

while preserving key peaks that correspond to biomolecular structures. Effective 

noise removal leads to higher classification accuracy, particularly in machine learning 

models such as Support Vector Machines (SVM), which rely on precise spectral 

features for disease identification. 

In this study, two advanced preprocessing techniques PenPoly (Polynomial 

Regression for Baseline Correction) and IMP (Intensity Modulation Processing) were 

utilized to refine Raman spectral data before classification. 

PenPoly applies polynomial fitting techniques to remove low-frequency 

baseline distortions, ensuring that Raman peaks are preserved while eliminating 

unwanted background signals. The baseline correction function is represented as: 

Polynomial regression effectively removes fluorescence and baseline drift, 

making spectral signals more uniform. However, selecting the optimal polynomial 

degree is crucial too low a degree may fail to correct complex variations, while too 

high a degree can introduce unwanted oscillations (Runge phenomenon). 

IMP is used to normalize and standardize spectral intensity, ensuring 

consistency across different samples and measurement conditions. This technique 

adjusts signal intensity values, enhancing peak visibility while reducing fluctuations 

caused by instrument variability. By modulating intensity across a predefined spectral 

range, IMP improves peak detection accuracy, making Raman spectral data more 

reliable for machine learning classification models. 

Both PenPoly and IMP significantly improve the classification accuracy of 

SVM applied to Raman spectral data. By removing baseline distortions and 

enhancing spectral clarity, these techniques ensure that SVM receives high-quality 

input, leading to better feature extraction and class separation. The results confirm 

that effective preprocessing enhances AI-driven Raman spectroscopy, enabling more 

precise glucose monitoring and disease classification. 



 

67 

 

 

Figure 19: Background correction function 

 

Figure 20: Background correction result with polynomial order order of 3 
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Figure 21: Background correction result with polynomial order order of 7 

 

Figure 22: Background correction result with polynomial order order of 12 
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Figure 23: Background correction result with polynomial order order of 16 

I focus on x values ranging from 800 cm⁻¹ to 1800 cm⁻¹ because this range 

contains important vibrational bands that help analyze key biological molecules, 

including proteins, lipids, nucleic acids, and carbohydrates. These molecules play a 

vital role in cellular function, and their unique spectral signatures provide valuable 

insights into the structure and composition of biological tissues. By focusing on this 

specific range, I can ensure that the Raman spectroscopy analysis captures chemically 

relevant signals that are most useful for biomedical applications. 

One of the primary advantages of using this range is its relevance to protein 

analysis, as it includes amide I and amide II bands, which provide information about 

secondary protein structures like alpha-helices and beta-sheets. These structures are 

essential for understanding protein folding, which can indicate biological 

abnormalities such as misfolding diseases. Similarly, lipid-associated vibrations fall 

within this range, allowing for detailed examination of cell membranes, lipid 

metabolism, and structural properties that differentiate healthy and diseased tissues. 

In addition to proteins and lipids, nucleic acid vibrations from DNA and RNA 

are also present in this spectral window. These signals offer valuable insights into 

genetic material interactions, molecular stability, and potential mutations that may 

contribute to diseases. Additionally, carbohydrates, which play a fundamental role in 

cell signaling, energy storage, and structural integrity, exhibit strong vibrational 
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activity within this range, making them useful markers for biochemical 

differentiation. 

Beyond its biological relevance, this range is selected to reduce interference 

from water, which can distort Raman signals at lower wave numbers. Water 

molecules strongly absorb light below 800 cm⁻¹, introducing unwanted background 

noise that can reduce the accuracy of spectral data. By limiting the analysis to 800 

cm⁻¹ – 1800 cm⁻¹, the study avoids these interference signals, ensuring that only 

relevant molecular features are examined. 

This spectral range is crucial for improving the accuracy and reliability of 

Raman spectroscopy in biomedical diagnostics. By focusing on well-defined 

vibrational bands that correspond to biologically significant molecules, the analysis 

enhances signal clarity, making it easier to classify diseased versus healthy tissues 

with machine learning models such as Support Vector Machines (SVM). With 

optimized spectral selection, this method provides precise molecular insights, 

improving the effectiveness of AI-driven Raman spectroscopy applications in glucose 

monitoring and disease classification.[47] 

3.10 Data shuffle 

To ensure the robustness and generalizability of the training model, the data was 

shuffled prior to training. The shuffle_data function was employed to randomly 

rearrange the order of the samples and their corresponding labels. This step helps in 

preventing any potential biases that might arise from the order of the data. By 

shuffling the data, each training iteration is exposed to a different order of samples, 

promoting better generalization of the model. The shuffled data was then used as 

input for the model training process. 
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Figure 24: Shuffle_data function 

By incorporating this step, we ensure that the training model is trained on a 

randomly ordered dataset, which contributes to the overall accuracy and reliability of 

the machine learning model. 
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Chapter 4: FINDINGS AND DISCUSSIONS 

 

4.1 Results with SVM 

4.1.1 SVM configurations 

I am setting up the parameters and configuring a machine learning model using 

Support Vector Machine (SVM). The make_pipeline function is used to create a 

pipeline that includes standard scaling (StandardScaler()) and the SVM model with 

the RBF (Radial Basis Function) kernel (SVC(kernel='rbf')). An alternative model, 

ExtraTreesClassifier, is reserved for later use. 

 

Figure 25: SVM configurations 

To track the performance metrics of the SVM model, several variables are 

initialized, including those for maximum, minimum, and average accuracy scores, as 

well as sensitivity and specificity scores. The cross-validation process is set up using 
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RepeatedStratifiedKFold, which performs stratified k-fold cross-validation multiple 

times (in this case, 5 splits repeated 10 times). A counter i is used to keep track of the 

number of cross-validation iterations. 

The code then enters a loop that iterates over each split of the data, updating the 

training and test indices. For each split, the data is divided into training (X_train, 

y_train) and testing sets (X_test, y_test). The model is trained using the training data 

and predictions are made on the test data. The accuracy of the model's predictions is 

calculated and printed for each iteration. Although additional metrics like sensitivity 

and specificity can be calculated, those lines are commented out in this code. 

Throughout the loop, the accuracy scores are aggregated to calculate the average 

accuracy score of the model across all cross-validation folds. Finally, the code prints 

the average SVM accuracy along with the number of iterations. This approach 

ensures that the model's performance is thoroughly evaluated and helps identify its 

effectiveness in classifying the data. 

4.1.2 Accuracy of the unprocessed data 

Firstly, I imported the unprocessed Raman data into a Support Vector Machine 

(SVM) within Jupyter Notebook to compare how well it processes data with different 

polynomial orders. The initial accuracy was checked, revealing that unprocessed 

signals can be challenging to classify, even with two labels. 

In this project, I utilized the SVM functionality provided by Scikit-learn, a 

powerful Python library for machine learning, directly within Jupyter Notebook. I 

made some modifications to adapt the code to my input data for reading and writing. 

Scikit-learn offers classes such as Support Vector Classification and Support Vector 

Regression, which enable me to develop and customize SVM models for 

classification problems.  

 

Figure 26: Unprocessed data accuracy results 

The table below is the result of the experiments with the unprocessed Raman 

data after I had run it 5 times: 

Run No Date Result 



 

74 

 

1 
02/12/2024 49.5% 

2 
03/12/2024 56% 

3 
04/12/2024 58% 

4 
04/122024 56.5% 

5 
05/12/2024 52% 

Average 
54.4% 

Table 2: unprocessed data SVM results 

As we can see, the results ranging from 49.5% to 58%, which is low for a two 

labels dataset. It indicates that the machine learning model is considered to be not too 

good at differentiate between these two types of labels based on the current data. This 

also say that there are room for improvements. 

4.1.3 Accuracy of the processed data 

When using penalized polynomial regression with a polynomial order of 3, the 

SVM produced a relatively positive result, indicating that signal processing has a 

positive impact on accurately predicting 2 labels. 

 

Figure 27: SVM Accuracy result with polynomial order of 3 

 The accuracy rate increased to approximately 10.5% from an average of 

60.5% to 70% 

Run No Date Result 

1 
02/12/2024 65.5% 

2 
03/12/2024 65% 

3 
04/12/2024 63.5% 
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4 
04/122024 70% 

5 
05/12/2024 60.5% 

Average 
64.9% 

Table 3: SVM Accuracy results with polynomial order of 3 

4.1.4 Adjustments and improvements 

After some adjustments such as adjust the polynomial order incrementally, 

typically in the range of 3 to 16, until I achieve a satisfactory outcome., I found out 

that setting the polynomial order of 10 yields the highest accuracy. The accuracy rate 

increased to approximately 77.2% which is 22.8% higher than the unprocessed data 

and 12,3% higher than when I set the polynomial order equals to 3. Keep in mind that 

a polynomial order of 10 may not always be optimal. Adjustments should be made 

based on the specific signal data, with careful observation and evaluation of changes 

in each dataset. This process ensures that the chosen polynomial order effectively 

addresses the unique characteristics and noise levels of the data, leading to more 

accurate baseline corrections and subsequent analyses. 

Run No Date Result 

1 
15/12/2024 77.5% 

2 
16/12/2024 78.5% 

3 
17/12/2024 76.5% 

4 
18/122024 77% 

5 
19/12/2024 76.5% 

Average 
77.2% 

Table 4: SVM Accuracy results with polynomial order of 10 
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Figure 28: SVM Accuracy result with polynomial order of 10 

4.1.5 IMP 

For this experiment, I also do some test regarding IMP in exchange for 

penalized polynomial regression 

Here are the results: 

Run No Date Result 

1 
15/12/2024 81% 

2 
16/12/2024 81% 

3 
17/12/2024 80% 

4 
18/122024 79% 

5 
19/12/2024 82% 

Average 
80.6% 

Table 5: SVM Accuracy results with polynomial order of 11 

 

Figure 29: Accuracy result with polynomial order of 11 

After some adjustments such as adjust the polynomial order incrementally, 

typically in the range of 3 to 16, until I achieve a satisfactory outcome., I found out 

that setting the polynomial order of 11 yields the highest average accuracy of 80.6%. 

Compare to the accuracy of the penalized polynomial regression, there is a slight 

increase in the accuracy. Which mean that data denoising have a positive impact to 

the accuracy of the model. The IMP method have a 3.4% higher accuracy compare to 
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penalized polynomial regression and a 15.7% higher accuracy compare to the 

Unprocessed data. 

4.2 Results with Extra Trees Classifier  

The experiment also used Extra Tree Classifier in addition of SVM to have a 

comparison with SVM accuracy 

4.2.1 Accuracy of the unprocessed data  

Apply the same setup with SVM model, but change the training model to Extra 

Tree Classifier, I got the results shown here: 

Run No Date Result 

1 
02/06/2025 63.5% 

2 
02/06/2025 59% 

3 
02/06/2025 62% 

4 
02/06/2025 61.5% 

5 
02/06/2025 60% 

Average 
61.2% 

Table 6: Extra Tree Classifier Accuracy results with unprocessed data 

We can see in the Table 6, it is a slight improvement to the SVM model but it 

is still low for a two label dataset. 

4.2.2 Accuracy with penalized polynomial regression  

Using the same processed data with the SVM model, when change to Extra Tree 

Classifier, we have a different result compare to SVM when using the polynomial 

order of 3: 

Run No Date Result 

1 
02/06/2025 60.5% 

2 
02/06/2025 62% 

3 
02/06/2025 59.5% 
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4 
02/06/2025 60% 

5 
02/06/2025 61% 

Average 
60.6% 

Table 7: Extra Tree Classifier Accuracy results with Penalized Poly order of 3 

The accuracy ranging from 59.5% to 62% with the average of 60.6% which 

shown a slight improvement over the unprocessed data but still lower than when using 

SVM but even lower than the ExtraTree unprocessed data results. When set to the 

polynomial order of 10, here are the results: 

Run No Date Result 

1 
02/06/2025 75.5% 

2 
02/06/2025 73.5% 

3 
02/06/2025 73% 

4 
02/06/2025 76.5% 

5 
02/06/2025 76.5% 

Average 
75% 

Table 8: Extra Tree Classifier Accuracy results with Penalized Poly order of 10 

This brings a notable improvement compared to Extra Tree Classifier Accuracy 

results with Penalized Poly order of 3 with a 14.4% bump in accuracy. The accuracy 

ranging from 73% to 76.5% with the average of 75%. Both the Extra Tree Classifier 

with polynomial order of 3 and 10 bring a slight decrease in accuracy compare to 

using SVM. The ExtraTree Classifier with polynomial of 10 br 

 

4.2.3 Adjustments and improvement 

When adjusting the polynomial order to find the best result, I found out that 

with the polynomial order of 13, I was able to achieve the highest accuracy result 

showing below: 
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Run No Date Result 

1 
02/06/2025 75.5% 

2 
02/06/2025 77.5% 

3 
02/06/2025 76.5% 

4 
02/06/2025 78% 

5 
02/06/2025 76.5% 

Average 
76.8% 

Table 9: Extra Tree Classifier Accuracy results with Penalized Poly order of 13 

This shown a slight improvement over polynomial 10 and a somewhat equals 

to the best result using penalized poly with SVM. 

4.2.4 Using IMP 

As like the SVM cycling through the polynomial order from 3 to 16 reveal that 

the polynomial order of 9 yield the highest accuracy: 

 

Run No Date Result 

1 
02/06/2025 80% 

2 
02/06/2025 81% 

3 
02/06/2025 80.5% 

4 
02/06/2025 81.5% 

5 
02/06/2025 81.5% 

Average 
80.9% 

Table 10: Extra Tree Classifier Accuracy results with IMP order of 9 
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The result is in the margin of error compare to the SVM with IMP method, both 

have the average around 80-81% but it is still bringing a higher result compare to 

penalized poly. 

4.3 Results with 1D-CNN 

In this research, 1D-CNN was also used to have a boarder comparison with 

SVM and Extra Tree Classifier. 

4.3.1 1D-CNN configurations 

The script begins by loading raw Raman spectral data and their corresponding 

labels from CSV files on disk. Each spectrum, originally stored as a row of intensities 

(shape: n_samples × n_wavenumbers), is converted into a three-dimensional array 

with shape (n_samples, n_wavenumbers, 1). This extra “channel” dimension is 

required by Keras’s Conv1D layers, which expect inputs in the form (batch, 

timesteps, channels). By reshaping the data in this way, the script prepares each 

sample as a one-channel signal that can be convolved along its wavenumber axis. 

For each iteration in the 50-fold loop, the code constructs a fresh convolutional 

network from scratch. The Sequential model starts with three Conv1D layers first 

with 80 filters, then 40, then 20 each using a kernel size of 5, ReLU activation, and 

L2 regularization (λ = 0.03). These layers scan the spectrum for local patterns, such 

as narrow peaks or shoulders, reusing the same small kernels across all positions to 

achieve translation invariance. After the final convolution, a Flatten layer collapses 

the multi-dimensional feature maps into a single vector, which is then passed through 

a Dense layer of 200 neurons (again with ReLU) and finally through a sigmoid neuron 

to output a binary class probability. 
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Figure 30: 1D-CNN layers 

Once the architecture is defined, the model is compiled with the Adam optimizer 

(learning rate = 1e-4) and binary cross-entropy loss. To prevent overfitting on this 

extremely small dataset, training uses a batch size of only two samples, and an 

EarlyStopping callback monitors the validation loss with a patience of 20 epochs 

automatically restoring the best weights when the network stops improving. The 

script also wraps each training run in a try/except block so that, even if the user 

interrupts execution, the current model weights are saved to disk under a fold-specific 

filename. 

Instead of traditional cross-validation splits, the code simply repeats this train-

and-evaluate cycle 50 times on the full dataset teach time with a fresh random 

initialization and a fresh 20% split off for validation. By logging start and end 

timestamps for each fold and recording both Keras’s internal metrics and externally 

computed accuracy via scikit-learn, the script quantifies the model’s stability and 

variance under repeated trainings on the same data. This approach offers insight into 

how sensitive the 1D-CNN’s performance is to weight initialization and data 

shuffling. 
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Figure 31: 1D-CNN Fit data to model 

Finally, after all folds complete, the script aggregates results by printing the list 

of per-fold accuracies, computing their mean, and generating summary statistics with 

pandas. Model.summary() is called to display the network’s final layer structure and 

parameter count. Throughout, prediction arrays, true labels, and timing information 

are written to log files, ensuring full reproducibility and enabling detailed post-hoc 

analysis of where and why the network succeeds or fails on different spectral samples. 

Model Architecture 

• input_shape: (n_wavenumbers, 1) — reshaped Raman spectrum 

• kernel_size: 5 — size of each Conv1D filter 

• filters: [80, 40, 20] — number of convolutional filters per layer 

• activation: ReLU — applied after each Conv1D and Dense layer 

• kernel_regularizer: L2(0.03) — regularization penalty to reduce overfitting 

• dense_units: 200 — number of neurons in the fully connected layer 

• output_units: 1 — sigmoid neuron for binary classification 

Training Configuration 

• loss_function: Binary Crossentropy 

• optimizer: Adam 

• learning_rate: 1e-4 

• batch_size: 2 — chosen for high update frequency on small datasets 

• epochs: 300 — maximum training limit 

• early_stopping_patience: 20 — stop training if no improvement on validation 

loss 

Validation Strategy 

• validation_split: 0.2 — 20% of each fold’s data held out during training 
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• shuffle: True — ensures data is randomly distributed before training each 

fold 

• num_folds: 50 — number of full re-trainings for statistical robustness 

 

4.3.2 Accuracy with Unprocessed data 

Here is the accuracy of 1D-CNN with the unprocessed data 

Run No Date Result 

1 
23/06/2025 57% 

2 
23/06/2025 65% 

3 
23/06/2025 63.5% 

4 
23/06/2025 59% 

5 
23/06/2025 66.6% 

Average 
62.22% 

Table 11: 1D-CNN Accuracy results with unprocessed data 

This shown that 1D-CNN have the highest accuracy in this project when 

comparing trained model with unprocessed data with the accuracy ranging from 57% 

to 66.6% and an average of 62.22%. This is a better result compare to SVM and 

ExtraTree but as shown later in the project, it is still low to when I combine the 

training model with data processing technique. 

Below is the hyperparameter that was choosen for the 1D-CNN training model: 

4.4 Results 

Below is the table that shown the accuracy of each model with the unprocessed 

data: 

SVM ExtraTree 1D-CNN 

54.4% 61.2% 62.22% 

Table 12: Baseline results 

 Despite all models working with the same input dataset, the 1D-CNN edges 

ahead in performance. This reflects its strength in learning localized spectral patterns 

via convolutional filters, even when trained on a small dataset. ExtraTrees performs 
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better than SVM, likely due to its ability to capture non-linear relationships and its 

ensemble-based averaging that reduces variance. SVM trails behind, possibly 

because it struggles with signal noise and limited sample size, especially without 

optimal kernel tuning or feature transformations. 

I have created a table that shows the accuracy of each training models 

corresponded with the polynomial order of Penalized Poly and IMP, here are the 

results: 

Poly 

Order 

SVM 

(PenPoly) 

SVM 

(IMP) 

Extratree 

(PenPoly) 

Extratree 

(IMP) 

1D-CNN 

(PenPoly) 

1D-CNN 

(IMP) 

3 64.9 65 60.6 62.16 75.6 81.27 

4 57.5 72.75 66.25 70.5 77 76.29 

5 65.5 73 67 72 79.1 83 

6 68.5 72 67.75 69.16 81 75.69 

7 71.5 75.5 74.25 71.5 83 86.39 

8 69.8 76 74 72.5 79.4 75.79 

9 74 77.5 74.5 80.9 76.7 80.7 

10 77.2 77 75 79.33 79 79.89 

11 76 80.6 75.5 75.66 81 82 

12 75.5 79.5 74.25 78.83 81.56 82.6 

13 74.5 79.8 76.8 79 78.8 83.7 

14 76.2 78.4 75.5 76.16 76.3 75.69 

15 74 78.3 72 76.83 78.34 77.98 

16 74.7 77.7 73 77.83 78.14 78.55 

Table 13: Overal Results 

Across polynomial expansions from degree 3 up to 16, I evaluated three learner 

types support vector machines (SVM), ExtraTrees ensembles, and a one-dimensional 

convolutional neural network (1D-CNN) each trained on two preprocessing schemes: 

penalized‐polynomial features (“PenPoly”) and imputed features (“IMP”). Charting 

accuracy versus polynomial order reveals how each model interacts with feature 

complexity and which combination yields the best performance on the Raman spectra 

dataset. 

 

 

 

 

 



 

85 

 

Model Preprocessing 
Peak 

Accuracy(%) 

Peak 

Degree 

SVM PenPoly 77.2 10 

SVM IMP 80.6 11 

ExtraTrees PenPoly 76.8 12 

ExtraTrees IMP 80.9 9 

1D-CNN PenPoly 83 7-8 

1D-CNN IMP 86.39 5 

Table 14: Peak Accuracy Results 

When comparing the baseline results (unprocessed Raman spectra) to the 

processed results (after baseline correction and feature engineering), the performance 

gains are substantial across all three classifiers: 

• SVM improved from 54.4% (unprocessed) to 80.6% when trained on 

imputed data with a polynomial order of 11. 

• ExtraTrees rose from 61.2% (unprocessed) to 80.9% at polynomial order 

9 under the same imputed preprocessing. 

• 1D-CNN advanced from 62.22% (unprocessed) to a peak of 86.39% 

using imputed data and a 7th-degree polynomial baseline correction. 

These improvements highlight just how critical effective preprocessing is in 

Raman spectral classification. Without baseline correction, the classifiers struggled 

to separate signal from noise, especially SVM, which relies heavily on feature scaling 

and noise-free boundaries. In contrast, once baseline trends were corrected and the 

data enriched through polynomial expansion especially when paired with imputation 

each model was able to extract more robust and discriminative features. 

Notably, the 1D-CNN gained the most from preprocessing, jumping more than 

24 percentage points. This reinforces the idea that convolutional architectures benefit 

greatly from well-aligned, denoised spectral inputs, allowing their filters to detect 

meaningful local patterns. Overall, the processed pipeline proves essential for 

unlocking the full classification potential of these models. 

SVM models show a gradual rise in accuracy as I increase polynomial degree. 

SVM with PenPoly features climbs from 64.9 % at degree 3 to about 77.2 % around 

degree 10, then settles in the mid-70s. Its imputed counterpart (SVM IMP) begins 

higher and peaks at 80.6 % at degree 11 before dipping slightly. Across all degrees, 

imputation consistently outperforms the penalized‐poly approach by roughly 3–5 

points, and the SVM’s optimal range appears between degrees 10 and 12. 
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ExtraTrees exhibits a similar trend but reaches its apex at lower degrees. 

ExtraTrees PenPoly improves from 60.6 % up to ~76.8 % near degree 12, whereas 

ExtraTrees IMP surges to 80.9 % at degree 9 before oscillating in the high-70s. Again, 

imputed features confer a clear advantage, and tree-based learners see diminishing or 

negative returns once the polynomial order exceeds 10. 

The 1D-CNN configurations deliver the strongest results, showing sensitivity 

to polynomial degree but outperforming both SVMs and ExtraTrees. The CNN 

trained on PenPoly features starts at 75.6 % for degree 3, peaks at 83 % around 

degrees 7–8, then tapers off toward the high-70s by degree 16. More notably, the 1D-

CNN IMP model achieves its top accuracy 86.39 % at degree 7 and maintains strong 

performance (around 79–83 %) for higher degrees. This early peak indicates that a 

moderate polynomial expansion best suits the CNN’s capacity without introducing 

redundant or noisy features. 

In direct comparison, 1D-CNN IMP at polynomial degree 7 is the clear winner, 

surpassing the next best configuration (ExtraTrees IMP at 80.9 %) by over 5 points. 

Overall model ranking by peak accuracy is: 1D-CNN IMP > 1D-CNN PenPoly ≈ 

SVM IMP ≈ ExtraTrees IMP > SVM PenPoly > ExtraTrees PenPoly. While SVM 

and ExtraTrees favor higher orders (8–12), the CNN peaks early (5–7) and can suffer 

from over‐polynomialization beyond that. 
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Chapter 5: CONCLUSION 

5.1 Concluding Remarks 

In this research, the primary objective was to establish effective methods for 

processing noisy Raman signals, particularly focusing on baseline correction using 

polynomial regression. Different polynomial orders from 3 to 16 were explored to 

determine their impact on signal processing. The study identified that low orders 

(e.g. 3) tend to underfit and lose essential spectral detail, while very high orders 

(e.g. 16) overfit and introduce spurious noise. Crucially, there is no “one-size-fits-

all” degree: optimal order must be chosen in light of each signal’s characteristics. 

Unprocessed Raman data were fed into Support Vector Machines (SVM) and 

ExtraTrees classifiers to benchmark performance without preprocessing. As 

expected, raw spectra yielded poor accuracy, underscoring the need for baseline 

correction and feature engineering. We implemented SVM (linear, polynomial, 

RBF, sigmoid kernels) and ExtraTrees via scikit-learn in Jupyter Notebook, 

shuffling data prior to training to eliminate ordering bias. 

Baseline‐corrected spectra obtained by polynomial regression of orders 3–16 

under two schemes (direct L2-penalized “PenPoly” vs. prior missing‐value 

imputation “IMP”) were then re-classified. ExtraTrees(PenPoly) improved from 

an average of 60.6 % at order 3 to 76.8 % at order 12; ExtraTrees(IMP) peaked at 

80.9 % at order 9. Likewise, SVM(PenPoly) rose from 64.9 % to 77.2 % (order 

10), while SVM(IMP) attained 80.6 % at order 11. 

Extending this comparison to a one-dimensional convolutional neural 

network (1D-CNN) an ANN architecture with Conv1D layers revealed even 

stronger gains. The CNN(PenPoly) peaked at 83.0 % accuracy around orders 7–8. 

Most notably, the CNN(IMP) model achieved 86.39 % at 5th-degree expansion 

the highest accuracy of all configurations before gradually tapering at higher 

degrees. 

Taken together, these results demonstrate: 

• Imputation (IMP) consistently outperforms direct penalized‐poly (PenPoly) 

preprocessing by 3–5 %. 

• Tree-based and kernel methods (ExtraTrees, SVM) favor higher 

polynomial orders (9–12). 

• Convolutional ANNs extract rich local features with only moderate 

expansion, peaking early (order 5) and avoiding over-polynomialization. 
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The research concluded that careful observation and evaluation of changes in 

each dataset are essential for selecting the most suitable polynomial order, ensuring 

accurate baseline correction and improved signal classification. 

5.2 Limitations 

Despite the significant findings and contributions of this research, several 

limitations should be acknowledged. 

Firstly, the quality of the Raman signal data used in this study may vary, and 

some datasets might contain inherent noise or artifacts. The availability of high-

quality, consistent data is crucial for accurate baseline correction and signal 

classification. Additionally, while the research focused on specific polynomial 

orders for baseline correction, the findings may not be universally applicable to all 

types of Raman signals or other spectroscopic data. Further research is needed to 

validate the results across different datasets and experimental conditions. 

Another limitation lies in the choice of polynomial orders. The study 

explored polynomial orders ranging from 3 to 16 for baseline correction. Although 

this range was chosen based on preliminary observations, it may not cover all 

potential polynomial orders that could be effective. A more exhaustive exploration 

of polynomial orders could yield different insights. The implementation of 

machine learning models, especially for large datasets, requires substantial 

computational resources. The limitations in computational power may have 

constrained the scope and scale of the experiments conducted in this research. 

While the study employed machine learning techniques for baseline 

correction and signal classification, some manual adjustments were still necessary. 

The reliance on visual observation and manual fine-tuning introduces subjectivity 

and potential biases. Furthermore, the research utilized specific machine learning 

models and hyperparameters. The choice of models and their settings could 

influence the outcomes, and different models or hyperparameter configurations 

might produce varying results. 

Finally, external factors such as environmental noise, experimental setup, 

and instrument calibration can impact the quality of Raman signal data. These 

factors were not exhaustively controlled or accounted for in this research, which 

may affect the reproducibility of the results. 
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Acknowledging these limitations is essential for understanding the context 

and boundaries of the findings. It also provides a foundation for future research to 

build upon and address the identified constraints. 

5.3 Recommendations 

Future research should focus on collecting a larger and more diverse dataset 

of Raman signals from various sources and conditions to enhance the robustness 

of the findings. This expanded dataset will allow for a more comprehensive 

analysis and help improve the generalizability of the results. 

Additionally, investigating other baseline correction methods, such as 

wavelet transforms or adaptive smoothing, and comparing their effectiveness with 

polynomial regression is crucial. Exploring these alternative methods can provide 

insights into their relative strengths and weaknesses, leading to improved signal 

processing techniques. 

Advanced machine learning techniques, such as deep learning or ensemble 

methods, should also be explored to enhance signal classification accuracy. These 

techniques have the potential to capture complex patterns in the data and improve 

the overall performance of the classification models. 

Implementing automated hyperparameter optimization techniques, like grid 

search or Bayesian optimization, is another important recommendation. These 

optimization methods can help identify the best model configurations, leading to 

more efficient and accurate model training. 

Ensuring controlled experimental setups to account for external factors like 

noise and temperature is essential for improving data quality. By controlling these 

environmental factors, researchers can obtain more reliable and reproducible 

results. 

Finally, focusing on creating real-time signal processing algorithms for 

immediate analysis and feedback is crucial. Developing real-time systems will 

enable researchers to process and analyze signals on the fly, providing timely 

insights and enhancing the practical applications of the research. 
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