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ABSTRACT

In recent years, graph-based deep learning has emerged as a crucial research di-
rection, particularly with the development of graph convolutional networks (GCNs).
These models enable the extraction of structural information from non-Euclidean
data, extending the capabilities of deep neural networks (DNNs) to fields such as
cybersecurity, computer vision, and social network analysis. However, most exist-
ing studies primarily focus on node-level representations while underutilizing global
graph structures.

This study proposes a DNN model based on graph-level representation learning to
enhance the performance of graph-aware applications. Instead of relying solely on
node features, this approach captures structural information across the entire graph,
improving generalization and model performance.

The objective of this research is to optimize deep learning model for graph-structured
data, enabling effective processing of complex datasets. To evaluate the proposed ap-
proach, we applied it to two critical tasks:

• SQL Injection detection, where SQL queries are represented as graphs, allowing
GCNs to extract deeper features.

• Hand gesture recognition using skeletal data, integrating GCNs with attention
mechanisms and spatial features to enhance accuracy.

The methodology involves extended GCN architectures, combined with self-attention
mechanisms to improve graph-level representation learning. Experimental results
demonstrate that the proposed approach achieves SOTA performance in SQL Injec-
tion detection with an accuracy of 99%, while also attaining 99.53% accuracy in hand
gesture recognition, outperforming traditional methods.

These findings highlight the potential of deep learning on graph representations in
improving AI system performance across various domains. However, this study also
identifies key challenges, such as the complex preprocessing required for graph data
and the dependence on labeled datasets. Future research will focus on unsupervised
learning for graphs and extending models to dynamic graphs.

iii



LIST OF ABBREVIATIONS

Abbreviation Meaning
AI Artificial Intelligence
ML Machine Learning
CAP Credit Assignment Problem

ANNs Artificial Neural Networks
GPUs Graphics Processing Units
TPUs Tensor Processing Units
IoT Internet of Things

CNNs Convolutional Neural Networks
RNNs Recurrent Neural Networks
GANs Generative Adversarial Networks
GNNs Graph Neural Networks
DNNs Deep Neural Networks
GCNs Graph Convolutional Networks

RecGNNs Recurrent Graph Neural Networks
ConvGNNs Convolutional Graph Neural Networks

GAEs Graph Autoencoders
STGNNs Spatial-Temporal Graph Neural Networks

SVMs Support Vector Machines
GFT Graph Fourier Transform
IGFT Inverse Graph Fourier Transform
ReLU Rectified Linear Unit
SQL Structured Query Language

GraphConv Graph Convolution
ViLS Vietnamese Sign Language
ASL American Sign Language

iv



List of Figures

2.1 Graph structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Top 10 web application security risks by OWASP [45]. . . . . . . . . . 20
3.2 SQL injection attack mechanism. . . . . . . . . . . . . . . . . . . . . . 21
3.3 SQL commands and normalization into graph form. . . . . . . . . . . . 26
3.4 SQL graph structure sample. . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Overview of the proposed model structure. . . . . . . . . . . . . . . . . 28
3.6 Module 1 - Structure of the graph convolutional network with two graph

convolutional blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Module 2 - Combination model with graph convolutional blocks and a

non-local block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Module 3 - A modified non-local module. . . . . . . . . . . . . . . . . 31
3.9 Overview of the proposed structure. . . . . . . . . . . . . . . . . . . . 39
3.10 Type-1 model structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Type-2 model structure: Implementation of graph convolution enhance-

ments on the Type-1 model. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 Structure of the Type-3 model. . . . . . . . . . . . . . . . . . . . . . . 43
3.13 Proposed model featuring a modified non-local block structure. . . . . . 44

4.1 Illustrative graphs associated with accuracy, precision, recall, F1 score,
and loss for the three proposed models of P1, P2 and P3. (a) P1 at epoch
20. (b) P1 at epoch 50. (c) P2 at epoch 20. (d) P2 at epoch 50. (e) P3 at
epoch 20. (f) P3 at epoch 50. . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Vietnamese sign language (ViSL) dataset. . . . . . . . . . . . . . . . . 59
4.3 Experimental datasets. (a): ASL dataset, (b): MNIST dataset . . . . . . 62
4.4 Graphs showing Accuracy and Loss metrics for Models 1, 2, 3, and the

proposed model on the ASL and MNIST datasets, with (a, b) for ASL
dataset accuracy and loss, (c, d) for MNIST dataset accuracy and loss,
and (e–h), (i–l) for training and testing performance metrics of each
model on ASL and MNIST datasets, respectively. . . . . . . . . . . . . 67

4.5 Confusion matrix of the proposed model on the test set of the Viet-
namese Sign Language (ViSL) dataset. . . . . . . . . . . . . . . . . . . 68

v



List of Tables

1.1 List of related studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 List of studies in the field of deep learning. . . . . . . . . . . . . . . . 9

4.1 Experiments in Dataset-I for Proposed Accuracy Models with the Di-
mension of Feature 64, Compared to the Other Models of LSTM, BERT,
Transformer, and ML. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Experiments in Dataset-I for Proposed Lightweight Models with the
Dimension of Feature 16, Compared to the Other Models of LSTM,
BERT, and CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Experiments in Dataset-II for Proposed Lightweight Models with the
Dimension of Feature 16, Compared to the Other Models of LSTM,
BERT, and CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Comparison of Experimental Results in Dataset-II Between Our Pro-
posed Models and the Model in [108]. . . . . . . . . . . . . . . . . . . 54

4.5 Comparison of Differential Results Between Proposed Models and the
Model in [108]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Number of samples in each database . . . . . . . . . . . . . . . . . . . 55
4.7 Test accuracy and F1-score comparison for models Lw1, Lw2, and Lw3

with 16 and 64 embeddings (test accuracy | F1-score) . . . . . . . . . . 57
4.8 Computational complexity of LW models (FLOPs | Parameters) . . . . . 57
4.9 Vietnamese sign language (ViSL) dataset properties . . . . . . . . . . . 60
4.10 Experimental results on two datasets for four models . . . . . . . . . . 64
4.11 Comparison of experimental results in ASL dataset between our pro-

posed model and other studies . . . . . . . . . . . . . . . . . . . . . . 65
4.12 Comparison of experimental results in MNIST dataset between our pro-

posed model and other studies . . . . . . . . . . . . . . . . . . . . . . 65
4.13 Performance comparison of different models . . . . . . . . . . . . . . . 67

vi



Contents

CERTIFICATE OF ORIGINALITY i

ACKNOWLEDGEMENTS ii

LIST OF ABBREVIATIONS iv

List of Figures v

List of Tables vi

Contents vii

1 Introduction 1
1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim and objectives of the study . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Methods of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Scope of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Research Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review 10
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 History of Graph Neural Networks (GNNs) . . . . . . . . . . . . 10
2.1.2 Development of Convolutional Graph Neural Networks (ConvGNNs) 10
2.1.3 Other Developments in GNNs . . . . . . . . . . . . . . . . . . . 11
2.1.4 GNNs and Network Embedding . . . . . . . . . . . . . . . . . . 11
2.1.5 GNNs and Graph Kernel Methods . . . . . . . . . . . . . . . . . 12

2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Graph structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Convolutional Graph Neural Networks (ConvGNNs) . . . . . . . 14

vii



3 GCN-Based Solutions for SQL Injection Detection and Sign Language
Recognition: Problem and Approach 18
3.1 Towards Lightweight Based on GCN Model For SQL Injection . . . . . 18

3.1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Towards an Efficient GCN Based on MultiHead Attentative for Sign
Language Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5 Proposed models . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Experiments, Result and Discussion 46
4.1 Towards Lightweight Model Using Non-local-based Graph Convolution

Neural Network for SQL Injection Detection . . . . . . . . . . . . . . . 46
4.1.1 Datasets and Experiments . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Evaluation of the proposed accuracy model . . . . . . . . . . . . 48
4.1.3 Evaluation of the Proposed Lightweight Model . . . . . . . . . . 53
4.1.4 Analysis of model adaptability and computational feasibility . . . 55
4.1.5 Conclusion for Towards Lightweight Model Using Non-local-based

Graph Convolution Neural Network for SQL Injection Detection . 58
4.2 A New Efficient Optimized Graph Convolutional Neural Network based

Multi-Head Attentative for Sign Language Recognition . . . . . . . . . 59
4.2.1 Datasets and Experiment . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Evaluation of the proposed model accuracy . . . . . . . . . . . . 64
4.2.3 Valuation proposed model performance on Vietnamese sign lan-

guage (ViSL) dataset . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Conclusion for A New Efficient Optimized Graph Convolutional

Neural Network based Multi-Head Attentative for Sign Language
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion 72
5.1 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



5.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Limitations of the research . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Suggestions for further research . . . . . . . . . . . . . . . . . . . . . . 74

References 76



Chapter 1

Introduction

1.1 Rationale
Over the past decade, research in deep learning has revolutionized the field of ar-

tificial intelligence (AI) and machine learning (ML), reshaping the way intelligent
systems are built and deployed. As a crucial branch of machine learning, deep learn-
ing is not just a technique, but also a systematic approach to learning and representing
complex data. It focuses on constructing and learning complex concepts through hier-
archical approaches or stacking multiple layers of more basic concepts, thus enabling
computer systems to automatically extract features and learn from data efficiently.

One of the greatest challenges in implementing machine learning models is ad-
dressing the Credit Assignment Problem (CAP). Artificial Neural Networks (ANNs)
have proven to be highly effective in solving CAP, becoming an indispensable tool
for deep learning implementation. ANNs, through techniques such as backpropaga-
tion and gradient optimization, allow the training of complex models with millions or
even billions of parameters. This makes deep learning a powerful and widely adopted
method that surpasses the limits of traditional machine learning techniques.

In recent years, the significant advancements in hardware computational capabil-
ities, particularly Graphics Processing Units (GPUs), along with the emergence of
distributed computing platforms such as TPUs, have marked a major breakthrough
in deep learning research. The parallel computation capability of GPUs has greatly
reduced the training time for neural models, while advanced optimization algorithms
allow models to converge faster and more accurately. At the same time, the availabil-
ity of vast amounts of data, from sources such as images, text, and sensor data from
the internet and IoT devices, has opened up immense opportunities for developing and
testing large-scale neural models.

These breakthroughs have positioned deep learning as the driving force behind
advancements in AI domains such as computer vision, speech recognition, natural
language processing, and recommendation systems.
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End-to-end deep learning models like CNNs, RNNs, and Autoencoders have not
only transformed approaches to machine learning tasks but have also laid the foun-
dation for the development of more complex architectures such as GANs, Attention
Mechanisms, and Transformers. These innovations have elevated deep learning to
new heights, making it a key tool in solving complex problems in science and engi-
neering.

Currently, non-Euclidean data, particularly graph-based data, is becoming increas-
ingly prevalent in many real-world applications and contexts. A graph is a powerful
and flexible data structure that represents objects along with their relationships. In
this structure, nodes represent objects, while edges represent relationships or interac-
tions between them. The ability to model complex systems through graphs not only
aids in visualizing data but also provides an analytical framework for various domains.

Graphs can capture structural dependencies and relationships between data compo-
nents, which traditional methods based on Euclidean data (such as tables or images)
cannot easily accomplish. As a result, graph data has naturally emerged in many
practical applications, including:

• Social Network Analysis: Graphs can represent relationships between users, such
as friend networks on social media platforms, helping to analyze influence, de-
tect communities, or suggest connections.

• Bioinformatics: In biology and medicine, graphs are used to represent protein-
protein networks, gene networks, or molecular structures, aiding in a deeper un-
derstanding of biological functions and drug discovery.

• Computer Vision: Graphs help represent spatial relationships between objects in
images or videos, such as in object recognition or scene classification applica-
tions.

Additionally, graphs are also used in recommendation systems, traffic network
analysis, and even financial problems, where data often have complex dependencies
that are difficult to model using traditional approaches.

In recent years, Graph Neural Networks (GNNs) have proven to be highly effec-
tive in leveraging the relationships between data components. Unlike traditional Eu-
clidean data, graphs allow the representation and exploration of complex, often non-
linear relationships between objects through nodes and edges. This advantage allows
models to capture not only local information but also global connections, opening
up significant potential for computational optimization. Particularly, GNNs enable
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the construction of compact yet effective models, making them suitable for practical
problems with limited resource requirements.

However, several challenges remain in applying these models to real-world prob-
lems. One of the biggest issues is that most real-world data is not readily available in
graph form. Instead, data is typically in tabular, time series, or image formats. Con-
verting this data into graph representations requires careful identification of nodes,
edges, and their weights. If this process is not carried out carefully, important data
may be lost or relationships may be incorrectly defined, leading to a significant drop
in model performance.

Furthermore, although graph models optimize computations by exploiting data
structures, their practical efficiency is still not optimal for large-scale problems. Many
models still require significant computational resources to handle complex data, mak-
ing them difficult to apply on resource-constrained systems or in real-time applica-
tions.

Another challenge is how to design models that are both compact and efficient.
In practice, problems demand models that not only achieve high accuracy but also
have sizes that are appropriate for real-world environments, such as mobile devices
or embedded systems. This creates an urgent need to balance model representation
capabilities with the computational resources required.

Thus, while graph models hold great potential due to their ability to leverage re-
lationships between components to optimize computations, limitations in data con-
version, computational efficiency, and model design for resource-constrained en-
vironments create significant research gaps. These challenges not only hinder the
widespread application of graph models but also reduce their potential in developing
advanced solutions for real-world problems.

1.2 Aim and objectives of the study

Aim

The objective of this research is to develop and enhance deep learning methods
based on graph-level representation learning to improve the effectiveness of graph-
aware applications. Specifically, the study focuses on constructing Deep Neural Net-
works (DNNs) on graph represubsentations to optimize feature learning capabilities
and address current limitations in graph-related problems.
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Objectives

To achieve this goal, the research focuses on the following key objectives:

• Conduct a comprehensive literature review on deep learning methods for graphs,
including graph-level representation learning techniques and related applications.

• Analyze current challenges in graph representation learning, particularly in terms
of generalization, representation capability, and computational efficiency.

• Develop a deep learning model based on graphs to improve the quality of graph-
level representations and enhance inference capabilities in graph-aware applica-
tions.

• Experiment with the proposed model on real-world datasets, evaluating its per-
formance against existing methods, with a particular focus on its ability to cap-
ture both global and local graph structures.

• Optimize the model to reduce computational costs, improve accuracy, and en-
hance scalability when applied to real-world systems.

1.3 Research question
The introduction to the research topic and the definition of the problem are pre-

sented in Section 1.1, leading to the primary objectives and research questions: "The
effectiveness of graph convolution in real-world problems and how to improve graph
classification based on machine learning to better address the issue of global connec-
tivity."

This research project aims to demonstrate the effectiveness of graph classification
by investigating the application of graphs to existing problems and exploring ways to
enhance the performance of graph convolution models:

• The main contribution of this research is to validate the effectiveness of graph
convolution by applying it to long-standing problems that have been traditionally
addressed using other methods.

• The study also investigates various approaches to improve graph convolution by
enhancing the global connectivity of components within the graph network.
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1.4 Methods of the study
This study employs both theoretical and experimental approaches to address re-

search questions by constructing, analyzing, and testing models based on graph data.
The research process is carried out through the following steps:

First, the study aims to demonstrate the effectiveness of the convolutional method
in classical problems. Subsequently, the research delves deeper into improving the
performance of graph convolutional models.

In the phase of evaluating the effectiveness of the convolutional method on clas-
sical problems, I selected a well-established problem that has been extensively stud-
ied for many years. Numerous effective methods have been proposed to address it;
however, no prior work has approached this problem using the graph convolutional
method.

The initial stage involves problem formulation, aiming to solve the classical prob-
lem with comparable or superior performance compared to existing methods. The
next phase consists of reviewing related research and literature, analyzing the strengths
and weaknesses of previous approaches, and providing an updated overview of the
field. The proposed approach is developed based on graph convolutional theories,
and the model is built, tested, and optimized using publicly available datasets relevant
to the problem. Evaluations are conducted based on experimental results.

Each part of the study follows a rigorous structure, beginning with problem def-
inition and an assessment of its significance. This is followed by a comprehensive
literature review, theoretical foundations, the proposed methodology, dataset descrip-
tion, model training and optimization processes, experimental results, and an overall
evaluation.

1.5 Scope of the study
This study focuses on Graph Neural Networks (GNNs), specifically Graph Convo-

lutional Networks (GCNs). The primary objective is to demonstrate the effectiveness
and accuracy of GCNs in graph classification tasks while proposing optimizations
to enhance model performance. These improvements aim to optimize training and
computation processes, thereby increasing accuracy, convergence speed, and general-
ization ability while maintaining feasibility in terms of computational resources.
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Data and Data Sources

This study utilizes publicly available graph datasets widely used in the research
community. These datasets include:

• Structured graphs: Predefined graph-structured data specifically designed for
graph learning tasks.

• Transformed graph data: Non-graph data sources that can be represented as
graphs to facilitate training.

Models and Optimization Methods

The research focuses on applying graph convolutional models, including:

• Standard GCN models: Direct application of graph convolution operations.

• Variants of GCN: Enhancements in the convolutional core or hybrid approaches
integrating other methods to optimize performance.

Practical Applications and Research Context

Graph classification is a fundamental problem in graph-based machine learning
with numerous practical applications across various domains. Although GCNs have
been proposed for a long time, their application remains less widespread than tradi-
tional convolutional methods, mainly due to the requirement that input data must be in
graph form. However, GCNs offer advantages such as computational efficiency and
feasibility for deployment on hardware-constrained systems, making them promising
for resource-limited environments.

Limitations in Time and Computational Resources

Due to constraints in time and computational resources, this study focuses on op-
timizing models for medium-scale datasets. The goal is to develop compact models
that reduce training time while maintaining competitive performance compared to
existing methods, thus enhancing feasibility for real-world applications.

1.6 Research Structure
This study is organized into six main chapters as follows:

• Chapter 1: Introduction – This chapter presents an overview of the research,
including its background, research problem, objectives, research questions, ap-
proach, significance, and the overall structure of the dissertation.
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• Chapter 2: Literature review – This chapter provides an overview of Graph
Neural Networks (GNNs), deep learning methods on graphs, and related prior
research. The content of this chapter is divided into three main sections:

– Section 1: An introduction to deep learning on graphs, including back-
ground, research motivation, and applications of GNNs.

– Section 2: Definitions of key concepts related to graphs, including funda-
mental terms such as vertices, edges, adjacency matrix, weight matrix, etc.

– Section 3: A detailed description of Graph Convolutional Networks (GCNs),
including mathematical formulations, operational mechanisms, and common
variants.

• Chapter 3: Study 1 – This chapter demonstrates the superior effectiveness of
Graph Convolutional Networks (GCNs) when applied to an optimization prob-
lem that has not been previously addressed using this method. It details the
experimental process, including the datasets used, model training strategy.

• Chapter 4: Study 2 – This chapter focuses on enhancing the performance of
convolutional models on a well-known graph-based problem by addressing lim-
itations related to global connectivity in graphs. It also provides a detailed de-
scription of the experimental process, covering the datasets, training strategy.

• Chapter 5: Evaluation of Results – This chapter analyzes and synthesizes the
research findings through two main sections:

– The first section presents and analyzes the results of each study in detail.

– The second section consolidates the obtained results, assessing the extent to
which the research objectives have been achieved.

• Chapter 6: Conclusion – This chapter summarizes the key contributions of the
research, highlights current limitations, and proposes future research directions
to address existing challenges and extend the applicability of the proposed mod-
els.

1.7 Contributions
During my master’s studies in the Master of Informatics and Computer Engineer-

ing (MICE) program, with the dedicated guidance and support of my professors and
the CoMI (Cognitive Machine Intelligence) research lab, especially Dr. Manh-Hung
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Ha, the head of CoMI lab, I conducted preliminary research that served as a solid
foundation for the completion of this master’s thesis.

Table 1.1: List of related studies.

Reference Title Venue
[1] Towards Lightweight Model Using

Non-local-based Graph Convolution
Neural Network for SQL Injection De-
tection

The Egyptian Informatics Journal, by
the Faculty of Computers and Arti-
ficial Intelligence, Cairo University
(Q1) (Revision)

[2] A New Efficient Optimized Graph
Convolutional Neural Network based
Multi-Head Attentative for Sign Lan-
guage Recognition

Multimedia Tools and Applications,
Springer (Q1) (Submitted)

[3] RHM: Novel Graph Convolution
Based on Non-Local Network for
SQL Injection Identification

2024 IEEE Symposium on Industrial
Electronics & Applications (ISIEA),
Kuala Lumpur, Malaysia (Published)

[4] Lightweight Graph Convolutional
Network Based on Multi-Head
Residual Attention for Hand Point
Classification

2024 IEEE International Conference
on Visual Communications and Im-
age Processing (VCIP), Tokyo, Japan
(Published)

[5] Enhancing Physical Rehabilitation
Evaluation with Temporal Graph
Convolution Networks

5th International Conference on In-
telligent Systems & Networks (Ac-
cepted)

During my studies and research, in addition to my primary focus on graph-based
methodologies, I had the opportunity to expand my scope to deep learning and collab-
orate with the CoMI research lab on several publications. These experiences have not
only enriched my expertise but also provided a solid foundation for the completion of
this master’s thesis.
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Table 1.2: List of studies in the field of deep learning.

Reference Title Venue
[6] Toward improving precision and com-

plexity of transformer-based cost-
sensitive learning models for plant dis-
ease detection

Frontiers in Computer Science (Q1)

[7] Emotional Inference from Speech Sig-
nals Informed by Multiple Stream
DNNs Based Non-Local Attention
Mechanism

EAI Endorsed Transactions on Indus-
trial Networks and Intelligent Systems
(Q2)

[8] Plant Pathology Identification Using
Local-Global Feature Level Based On
Transformer

Indonesian Journal of Electrical Engi-
neering and Computer Science (Q3)

[9] Low-High Feature Based Local-
Global Attention for Traffic Police
Action Identification

2023 Asia Meeting on Environment
and Electrical Engineering (EEE-
AM), Hanoi, Vietnam

[10] You Only Look Once Based-C2fGhost
Using Efficient CIoU Loss Function
for Airplane Detection

2024 9th International Conference on
Frontiers of Signal Processing, Paris,
France

[11] Human Detection Based Yolo
Backbones-Transformer in UAVs

2023 International Conference on Sys-
tem Science and Engineering (IC-
SSE), Ho Chi Minh, Vietnam

[12] An Effective Method for Detecting
Personal Protective Equipment at Real
Construction Sites Using the Im-
proved YOLOv5s with SIoU Loss
Function

2023 IEEE International Conference
on Research, Innovation and Vision
for the Future, Hanoi, Vietnam

[13] VNEMOS: Vietnamese Speech Emo-
tion Inference Using Deep Neural Net-
works

2024 9th International Conference on
Integrated Circuits, Design, and Veri-
fication (ICDV), Hanoi, Vietnam
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Chapter 2

Literature review

This chapter provides a literature review on Graph Neural Networks (GNNs), fo-
cusing on their historical development, key methodologies such as Recurrent GNNs
and Convolutional GNNs, and fundamental concepts of graph structures. It aims to
establish a theoretical and practical foundation, elucidating how GNNs process graph
data while drawing comparisons with related techniques, including network embed-
ding and graph kernel methods.

2.1 Background

2.1.1 History of Graph Neural Networks (GNNs)
Graph Neural Networks (GNNs) were first studied in the late 1990s. The work of

Sperduti et al. (1997) [14] pioneered the application of neural networks to directed
acyclic graphs, laying the foundation for subsequent research on GNNs.

The term "Graph Neural Networks" was first introduced in the study of Gori et al.
(2005) [15] and later expanded by Scarselli et al. (2009) [16] and Gallicchio et al.
(2010) [17]. These methods belong to the class of Recurrent Graph Neural Networks
(RecGNNs), where information from neighboring nodes is iteratively propagated to
learn representations of the target node. This process continues until a stable state
is reached. However, this approach has significant computational costs, and many
recent studies have focused on improving the efficiency of RecGNNs [18, 19].

2.1.2 Development of Convolutional Graph Neural Networks
(ConvGNNs)

With the success of Convolutional Neural Networks (CNNs) in computer vision,
researchers sought to extend convolution operations to graph data. This led to the
emergence of Convolutional Graph Neural Networks (ConvGNNs), where convolu-
tions are redefined to handle non-Euclidean structured data.

ConvGNNs are divided into two main approaches:
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• Spectral-based methods: The first significant study in this direction was pre-
sented by Bruna et al. (2013) [20], where they utilized graph spectral theory
to define convolution operations on graphs. Since then, many studies have re-
fined and approximated this method to reduce computational costs and enhance
applicability [21, 22, 23, 24].

• Spatial-based methods: These methods were studied early on but received little
attention. Micheli et al. (2009) [25] proposed a non-recurrent model that ad-
dressed inter-node dependencies while maintaining the message-passing mech-
anism from RecGNNs. However, this research did not gain much recognition
at the time. Only in recent years have spatial-based ConvGNNs attracted more
attention with the emergence of advanced models [26, 27, 28].

2.1.3 Other Developments in GNNs
Besides RecGNNs and ConvGNNs, several other GNN methods have emerged to

extend the capability of modeling graph data. Some notable developments include:

• Graph Autoencoders (GAEs): These models use autoencoder architectures to
learn compressed representations of graphs, serving tasks such as community
detection or link prediction.

• Spatial-Temporal Graph Neural Networks (STGNNs): These models extend
GNNs to handle dynamic graph data, where relationships between nodes change
over time.

Overall, GNN methods continue to evolve in various directions, leveraging fea-
tures from RecGNNs, ConvGNNs, and other advanced neural network architectures
to tackle a wide range of problems on graph data.

2.1.4 GNNs and Network Embedding
GNNs are closely related to graph embedding or network embedding, a field that

has garnered increasing interest from the data mining and machine learning commu-
nities [29, 30, 31, 32, 33, 34].

Network embedding aims to represent nodes in a graph as low-dimensional vectors
while preserving both the network’s structural connections and node attribute infor-
mation. This allows various graph analysis tasks, such as classification, clustering,
and recommendation, to be effectively handled using conventional machine learning
algorithms like support vector machines (SVMs).
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On the other hand, GNNs are deep learning models designed to process graph-
related problems in an end-to-end manner, enabling the extraction of high-level fea-
tures explicitly.

The key differences between GNNs and network embedding are as follows:

• GNNs are a family of neural network models tailored for diverse tasks.

• Network embedding consists of various methods that all aim to achieve a com-
mon objective.

As a result, GNNs can address network embedding tasks through the graph autoen-
coder framework. Conversely, network embedding also includes non-deep-learning
methods such as matrix factorization [35, 36] and random walk-based approaches
[37].

2.1.5 GNNs and Graph Kernel Methods
Graph kernel methods were once the dominant techniques for solving graph clas-

sification problems [38, 39, 40]. These methods use kernel functions to measure
similarity between graph pairs, enabling kernel-based algorithms such as SVMs to
perform supervised learning on graphs.

Both GNNs and graph kernel methods map graphs or nodes into a vector space,
but their approaches differ:

• Graph kernel methods rely on a fixed (deterministic) mapping function.

• GNNs learn the mapping function from data, allowing for greater adaptability.

Since graph kernel methods require pairwise similarity computation, they suffer
from scalability issues. In contrast, GNNs can directly extract features and classify
graphs efficiently.

For more details on graph kernel methods, readers may refer to [41].

2.2 Definition

2.2.1 Graph structure
A graph in Fig. 2.1 is formally represented as G = (V,E), where V denotes the

set of vertices or nodes, referred to as "nodes" hereafter, while E signifies the set of
edges. More precisely, let vi 2 V be indicative of a node, and ei j = (vi,v j) 2 E be
representative of an edge originating from node vi and terminating at node v j. In this
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context, the concept of the node’s neighborhood, denoted as N(v), encompasses the
set of nodes u 2V in which an edge (v,u) exists within E.

Central to the representation is the adjacency matrix A, a square matrix of dimen-
sions n⇥ n, where n stands for the number of nodes within the graph. Elements Ai j

of this matrix follows the logic that Ai j equals 1 if the corresponding edge ei j belongs
to E; conversely, Ai j assumes a value of 0 if ei j is not an element of E. Furthermore,
the framework accommodates the inclusion of node attributes, denoted as X , where
X 2Rn⇥d . Here, X operates as a node feature matrix, with rows xv 2Rd encapsulating
the unique feature vector associated with each node v.

Figure 2.1: Graph structure.

Simultaneously, the graph can incorporate edge attributes represented by X
e. In

this context, X
e 2 Rm⇥c serves as an edge feature matrix, where m represents the

number of edges in the graph (the number of rows in the matrix X
e) and c represents

the number of features for each edge (the number of columns in the matrix X
e). Each

distinct entry, X
e

(u,v) 2 Rc, housed within X
e characterizes the feature vector corre-

sponding to the respective edge (v,u). This nuanced exposition underscores the ca-
pacity of the graph model to holistically accommodate both node and edge attributes,
thereby enhancing its suitability for sophisticated real-world applications.

2.2.2 Directed graph
A directed graph is a type of graph in which all edges have a specific direction,

meaning that each edge goes from one node to another in a determined manner. In
other words, if there exists an edge from node u to node v, there is not necessarily an
edge from v to u. Directed graphs are commonly used to model asymmetric relation-
ships such as traffic flow, causality relations, or computer networks, where data can
only be transmitted in a specific direction.
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On the other hand, an undirected graph can be considered a special case of a
directed graph, where, if two nodes are connected, there exists a pair of edges in
opposite directions, ensuring that the relationship between nodes is bidirectional. In
an undirected graph, there is no distinction between the starting and ending points of
an edge; rather, an edge simply represents a connection between two nodes.

Formally, a graph is classified as undirected if and only if its adjacency matrix
is symmetric. That is, if there exists an edge between nodes u and v, then there
must also be an edge from v to u, ensuring that Auv = Avu. This property reflects
the symmetry in relationships between nodes and guarantees that the graph can be
represented without considering edge directions. Undirected graphs are frequently
used to model symmetric relationships, such as friendships in social networks, road
connections between cities, or links between elements in a physical system.

2.2.3 Convolutional Graph Neural Networks (ConvGNNs)
Convolutional Graph Neural Networks (ConvGNNs) share a strong connection

with Recurrent Graph Neural Networks (RecGNNs). However, instead of iteratively
updating node states with contraction constraints as in RecGNNs, ConvGNNs ad-
dress cyclic dependencies by employing a fixed number of layers, each with distinct
weights.

Due to their efficiency in performing graph convolutions and their seamless inte-
gration with other neural network models, ConvGNNs have rapidly gained popularity
in recent years. These methods can be broadly categorized into two main approaches:

• Spectral-based Methods: This approach defines graph convolution using filters
derived from graph signal processing techniques. The convolution operation in
this context can be interpreted as a process of noise reduction in graph signals,
facilitating the extraction of meaningful structural information.

• Spatial-based Methods: Building upon the principles of RecGNNs, spatial-
based methods define graph convolution by propagating information among neigh-
boring nodes. This facilitates the learning of spatial relationships within the
graph structure.

Since the introduction of the GCN model [23], which bridges the gap between
spectral-based and spatial-based methods, spatial-based approaches have significantly
advanced due to their efficiency, flexibility, and generalization capabilities.

In this study, I focus on the spatial-based approach to effectively leverage informa-
tion propagation between nodes in the graph.
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Spectral-based ConvGNNs

Spectral-based methods have a strong theoretical foundation in graph signal pro-
cessing [42, 43, 44]. These methods assume that the graph is undirected and is repre-
sented by the normalized graph Laplacian matrix, which is defined as:

L = In �D
�1/2

AD
�1/2

where: - D is the diagonal degree matrix, with elements Dii = Â j Ai j, - A is the ad-
jacency matrix representing the connections between nodes, - In is the identity matrix
of size n.

A key property of the normalized graph Laplacian matrix is that it is symmetric
and positive semi-definite, allowing it to be decomposed as follows:

L =ULU
T

where: - U = [u0,u1, . . . ,un�1] 2Rn⇥n is the matrix of eigenvectors of L, - L is the
diagonal matrix containing the corresponding eigenvalues, with Lii = li.

The eigenvectors of the Laplacian matrix form an orthonormal basis, satisfying the
condition:

U
T
U = I

In the context of graph signal processing, a signal can be represented as a vector
x 2 Rn, where each element xi corresponds to the signal value at node i. The graph
Fourier transform (GFT) is then defined as:

F(x) =U
T

x

Conversely, the inverse graph Fourier transform (IGFT) is given by:

F
�1(x̂) =Ux̂

where x̂ represents the transformed signal in the spectral domain. Essentially, this
transformation projects the input graph signal onto the space spanned by the eigen-
vectors of the Laplacian matrix. The spectral components x̂ serve as coefficients in
the linear combination of eigenvectors. Consequently, the original signal can be re-
constructed via the inverse Fourier transform:

x = Â
i

x̂iui
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This expression illustrates how a signal can be decomposed into spectral compo-
nents, providing a powerful approach for processing and analyzing graph signals.

Spatial-based ConvGNNs

Spatial-based methods define graph convolution through message passing between
neighboring nodes. Unlike spectral-based approaches, which rely on eigen decom-
position of the graph Laplacian, spatial-based methods operate directly in the node
domain, making them more scalable and adaptable to various graph structures.

A fundamental operation in spatial-based ConvGNNs is the aggregation of infor-
mation from neighboring nodes. Given a graph G = (V,E), where V represents the
set of nodes and E denotes the edges, the feature representation of a node v at layer
l +1 is updated as follows:

h
(l+1)
v = s

 
W

(l) Â
u2N (v)

h
(l)
u

|N (v)|+b
(l)

!

where:

• h
(l)
v represents the feature vector of node v at layer l,

• N (v) denotes the set of neighboring nodes of v,

• W
(l) is the weight matrix at layer l,

• b
(l) is the bias term,

• s is a non-linear activation function (e.g., ReLU).

This aggregation process ensures that each node updates its representation by in-
corporating information from its local neighborhood, thereby capturing structural and
relational properties within the graph.

One of the key advantages of spatial-based ConvGNNs is their locality-driven na-
ture. Since these models aggregate information from neighboring nodes in a recursive
manner, they are more efficient and flexible for large-scale graphs. Unlike spectral-
based methods, spatial-based approaches do not require a fixed graph structure, mak-
ing them well-suited for dynamic and heterogeneous graphs.

A notable model that bridges the gap between spectral-based and spatial-based
approaches is Graph Convolutional Network (GCN) [23], which simplifies the aggre-
gation rule by introducing a normalized propagation mechanism:

H
(l+1) = s

⇣
D̃
�1/2

ÃD̃
�1/2

H
(l)

W
(l)
⌘
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where:

• Ã = A+ I is the adjacency matrix with self-loops,

• D̃ is the degree matrix of Ã,

• H
(l) represents the node features at layer l.

This formulation allows information to be propagated efficiently while maintain-
ing stability during training. Due to its effectiveness, spatial-based ConvGNNs have
become the dominant approach in recent years, offering a balance between computa-
tional efficiency and expressive power.

In this study, we focus on spatial-based methods, leveraging their ability to dynam-
ically adapt to graph structures and efficiently aggregate node information.
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Chapter 3

GCN-Based Solutions for SQL
Injection Detection and Sign
Language Recognition:
Problem and Approach

3.1 Towards Lightweight Based on GCN Model For
SQL Injection

3.1.1 Rationale
Although graph convolutional networks (GCN) have been introduced for nearly a

decade and have attracted significant attention from the scientific research commu-
nity, they have not yet been widely applied in many research domains and real-world
applications as convolutional neural networks (CNN). One of the main barriers to the
widespread adoption of GCN lies in the challenge of input data representation.

Unlike CNN, which operates on Euclidean-structured data such as images or time
series, GCN requires input data to be represented as a graph consisting of nodes and
edges that define relationships between entities. However, in many real-world scenar-
ios, data is not naturally structured as a graph, and transforming it into this format
poses significant challenges, limiting the applicability of GCN beyond academic re-
search.

In this chapter, I explore the potential of GCN by applying it to a classical prob-
lem that has not previously been addressed using this method: SQL injection de-
tection. The goal of this study is to develop an optimized GCN model that effec-
tively processes graph-structured input data while improving detection performance.
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To achieve this, I propose the model Towards Lightweight Model Using Non-local-
based Graph Convolution Neural Network for SQL Injection Detection, which inte-
grates non-local-based graph convolution techniques to leverage non-local dependen-
cies within the data.

Through experimental evaluations, this study aims to assess the effectiveness of
the proposed approach compared to traditional models, thereby shedding light on the
potential of GCN in cybersecurity applications.

SQL injection presents significant risks to web applications and databases, allow-
ing unauthorized access and data breaches. To tackle this problem, we introduce a
novel graph-based network, a previously unexplored structure for detecting SQL in-
jection attacks. In this framework, SQL statements are represented as nodes, with
edges defined by their interconnections. We propose three graph convolutional neural
network (CNN) models: a graph classification approach utilizing a two-layer Graph
Convolutional Network (GCN), a graph classification model incorporating a non-
local graph convolution derived from a 1x1 convolution (replacing the standard 1x1
convolution), and an enhanced non-local-block module where the 1x1 convolution
layers are substituted with GCN layers. These models achieve an accuracy exceeding
99% and inference times below 1 ms across two datasets. Compared to 22 conven-
tional models, our GCN-based approaches offer improved computational efficiency,
reduced parameter counts, higher accuracy, and the flexibility to process input se-
quences of varying lengths, highlighting their potential for real-world cybersecurity
applications, particularly in robust SQL injection detection and prevention.

3.1.2 Introduction
With the rapid expansion of the internet, a continuous surge in tools and appli-

cations has emerged, enabling seamless access to information, real-time interactions,
and task execution from any location. Alongside this progress, however, cybersecurity
challenges and threats to users’ personal data have intensified, driven by escalating se-
curity risks. Among these, SQL injection stands out as a critical issue, drawing signif-
icant attention from developers and researchers alike. This widespread attack exploits
vulnerabilities in web applications, aiming to illegitimately infiltrate systems—most
notably database systems—posing a severe risk to data integrity and security. Such
attacks are characterized by their diversity, rapid adaptability, and covert nature, often
leading to substantial harm.

According to the OWASP Top 10 list [45], SQL injection ranks third among secu-
rity vulnerabilities, as illustrated in Fig. 3.1, underscoring the urgent need for develop-
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Figure 3.1: Top 10 web application security risks by OWASP [45].

ers to implement robust countermeasures. Alarmingly, 94% of evaluated applications
revealed vulnerabilities tied to SQL injection during testing. These weaknesses are
categorized into 33 distinct types under the Common Weakness Enumeration (CWE)
framework, reflecting their frequent occurrence across various applications.

As a prominent vulnerability in network security, SQL injection triggers profound
consequences, jeopardizing the authenticity, integrity, authorization, and overall safety
of systems [46]. A notable instance is the 2011 cyberattack on Sony’s PlayStation
Network, where a skilled hacker group exploited SQL injection flaws. This breach
compromised over 77 million accounts, including the theft of around 12 million credit
card records [47]. Beyond the exposure of sensitive user data, the attack inflicted eco-
nomic damages estimated at up to 170 million USD. A comparable incident unfolded
in 2017, when attackers exploited SQL vulnerabilities to extract sensitive data from
more than 20 universities and government bodies in the UK and US. These cases
highlight the critical importance of countering SQL injection techniques to protect
information and network infrastructures.

Theoretically, any web application reliant on a database is susceptible to SQL in-
jection risks. As illustrated in Fig. 3.2, inadequate authentication measures or weak
protective strategies during the development process can allow attackers to seamlessly
inject and execute SQL commands within the system.

This ability grants attackers elevated privileges to query or alter data, leading to
significant fallout. First, it creates a hidden risk of exposing critical data, including
personal and financial details, as attackers can retrieve information from the database.
Second, it enables data modification or deletion, undermining data integrity and caus-
ing the loss of essential information. Third, SQL injection can empower attackers to
seize control of the system, potentially inflicting direct harm to the system or its com-
ponents, resulting in considerable time and financial costs for recovery. Finally, such
attacks can severely tarnish the reputation of the affected organization or application.
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Figure 3.2: SQL injection attack mechanism.

Thus, defending against SQL injection vulnerabilities is vital for ensuring information
security and system stability.

A key difficulty, however, stems from the sophisticated stealth of these attacks.
Unlike other attack types that produce overt signs, SQL injection can be subtly exe-
cuted, evading the typical indicators of network intrusions. Attackers often infiltrate
through standard web application ports, blending their actions with legitimate client
requests, which complicates detection by firewalls. If unnoticed, these attacks can
persist undetected for prolonged periods, causing substantial losses.

Most modern web application firewalls employ rule-based or pattern-matching al-
gorithms [48], widely used to shield systems from similar threats. While efficient,
these methods struggle to address the full spectrum of SQL injection variants. Ma-
chine learning approaches have also been adopted to detect such attacks. Typically,
researchers extract distinct features from known attack samples and apply basic ma-
chine learning techniques for classification, achieving reasonable accuracy. Yet, the
complexity and diversity of SQL injection patterns pose ongoing challenges, requiring
continuous model refinement. Although deep learning advancements are increasingly
utilized across fields, their application to SQL injection detection often faces overfit-
ting issues. To mitigate this, techniques such as data augmentation, model optimiza-
tion, and innovative methods have been proposed, yielding promising outcomes.

In this research, we introduce a deep learning model for identifying SQL injection
attack code sequences, combining Text2Vec, Graph Convolutional Network (GCN),
Long Short-Term Memory (LSTM), attention mechanisms, and non-local network
techniques. Our approach begins by converting input text data into vector repre-
sentations using word embedding to map words into vectors. Next, we construct a
graph structure to capture relationships within the sequential text data, linking words
based on defined rules. GCN is then applied to address the problem. We compare
our model with alternatives, such as those using LSTM and attention, on the same
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dataset, demonstrating that our proposed model achieves superior accuracy based on
experimental results.

This chapter is organized as follows: Section 2 reviews related research efforts in
this domain. Section 3 elaborates on the design methodologies and proposed models.

3.1.3 Related Works
SQL injection vulnerabilities have been a persistent and vital focus in web secu-

rity research for decades, with broader efforts in AI-driven threat detection and news
sensors offering complementary insights [49]. Early investigations aimed to highlight
the risks and impacts of these vulnerabilities. A significant early contribution by Hal-
fond and Orso [50] outlined the dangers of SQL injection in web applications and
described attacker strategies.

As attack methods have advanced, so too have SQL injection techniques. Stut-
tard’s recent study [51] explored sophisticated approaches, such as blind SQL in-
jection, time-based blind SQL injection, and out-of-band SQL injection, providing
critical understanding of their variety and reinforcing the need for forward-thinking
countermeasures.

Detecting SQL injection is essential for safeguarding security and data integrity.
Traditional methods for identifying and preventing these attacks typically rely on
rule-based analysis using predefined patterns. Common practices include employ-
ing prepared statements or parameterized queries to isolate user inputs from SQL
commands. Prepared statements enable developers to predefine query structures and
populate them with user data, avoiding direct concatenation. Similarly, parameterized
queries ensure a clear divide between user inputs and SQL code, blocking unintended
command injections.

However, these conventional approaches require significant manual effort. Re-
searchers often extract features based on prior knowledge and use string-matching
techniques for detection, which struggle to adapt to novel attack methods. Their rigid-
ity also limits responsiveness to changing application needs.

Beyond traditional techniques, recent progress in machine learning has introduced
innovative ways to apply these methods, including leveraging real-time social media
data for cyber-attack prediction, as examined in a Twitter-based survey [52]. Many
contemporary studies have used basic machine learning algorithms to detect SQL
injection, with feature extraction playing a central role. By analyzing attack com-
mand patterns, these efforts enhance model detection capabilities. For instance, Af-
nan Mahmud Al Badri et al. [53] implemented the AdaBoost algorithm in a Web
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Application Firewall (WAF) classifier, achieving notable accuracy. Eman Hosam’s
research [54] extracted 13 features and tested six machine learning models, reach-
ing 99.6% accuracy. Aidana Zhumabekova [55] evaluated models like naı̈ve Bayes,
support vector machines, decision trees, random forests, XGBoost, and CatBoost, all
exceeding 99.5% accuracy. Additionally, Kasim Tasdemir [56] used a bag-of-words
approach for sentence representation, testing 20 machine learning models. Yet, these
methods’ success hinges on effective feature extraction, demanding significant man-
ual resources and adaptability to evolving attack diversity.

Over the past decade, deep learning’s rapid evolution has entrenched its role across
research domains, driven by its powerful feature extraction abilities. This has sparked
interest in applying deep learning to SQL injection detection and prevention. Abaimov
et al. [57] encoded raw data into patterns and used 1D convolution to demonstrate
efficacy. Thalji’s team [58] proposed AE-Net, a neural network for text feature ex-
traction, achieving 99% accuracy. Zhang et al. [59] compared Convolutional Neural
Networks (CNNs) with traditional machine learning, highlighting CNNs’ superior
predictive power. Overall, deep learning, particularly CNNs, outperforms conven-
tional methods in SQL injection detection.

Word embedding techniques have recently surged in popularity, finding use in tasks
like text classification, knowledge extraction, and question answering. Neural net-
work models based on the distributional hypothesis excel at mapping semantic word
relationships into low-dimensional spaces. Though word embedding predates recent
advances, hardware improvements and optimization breakthroughs around 2012–2013
elevated neural network models’ prominence [60]. The 2013 introduction of word2Vec
[61] significantly boosted research interest, paving the way for advanced deep learn-
ing applications.

Amid this focus on embedding models, researchers have harnessed them for text
feature extraction in deep learning. Xie et al. [62] introduced an elastic-pooling CNN,
vectorizing SQL queries with Word2vec and processing them via CNN, surpassing
traditional machine learning performance. Gowtham’s team [63] used CBOW and
SKG for semantic feature extraction, achieving 98% accuracy with machine learning
classification. Luo et al. [64] employed the gensim library for embedding, followed
by CNN classification, reaching up to 99% accuracy.

Innovative approaches include Zhang’s [59] use of a Deep Belief Network (DBN)
to monitor HTTP requests for SQL injection detection. Tang [65] applied MPL and
LSTM networks to extract features from HTTP sequences, while Qi Li et al. [66]
proposed an LSTM-based method for intelligent transportation systems. Further ex-
ploration of LSTM variants, such as BILSTM with an attention mechanism [67], has
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enhanced classification performance.
Recent advancements in natural language processing have produced robust archi-

tectures like Transformers [68]. Introduced in 2018, BERT [69] excels in language
tasks and could classify SQL queries as character sequences. However, sequence-
based methods like LSTM and modern NLP models like BERT, despite their semantic
strengths, face high computational costs, a limitation also noted in AI for edge com-
puting in IoT systems [70], reducing efficiency in systems needing rapid, large-scale
data processing.

A research gap I’ve identified is that simple deep learning models using standard
convolutions often require fixed input vector sizes, restricting their ability to handle
variable-length SQL queries. While larger models can mitigate this, they increase
computational complexity, undermining real-time feasibility. Thus, I propose using
the flexible, non-Euclidean nature of graphs to create a compact model that processes
varying input lengths without fixed-size constraints.

3.1.4 Methodology
To tackle the challenge of SQL injection classification, our approach builds upon

foundational techniques. As noted earlier, SQL vulnerabilities primarily stem from
developers’ oversight in system design, often neglecting to rigorously filter user in-
puts or implement robust mechanisms to detect suspicious data. Malicious actors
exploit these gaps by injecting dynamic SQL code into input fields, enabling them to
breach the system and execute harmful commands. Acknowledging this root cause,
we recognize that classifying incoming data is a pivotal step. In our view, this data
typically manifests as text. Consequently, our research centers on exploring text pro-
cessing methods—such as word embedding, Recurrent Neural Networks (RNNs), and
diverse feature extraction and synthesis techniques—to enhance the identification of
hidden risks within data objects through optimized processing and analysis.

Word Embedding with FastText Word embedding is a fundamental method in Nat-
ural Language Processing (NLP) that transforms natural language vocabulary into
numerical representations. Its primary aim is to map words into vector spaces where
semantically similar words are positioned in close proximity.

Introduced in 2017 by Facebook AI Research, FastText [71] is a word embedding
technique that leverages the skip-gram model to predict surrounding words for a given
word, while employing an n-gram model to generate representations based on sub-
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word units. By integrating these approaches, FastText produces detailed vocabulary
embeddings, capturing both word-level and sub-word-level information to boost NLP
performance.

The probability of a word w given its context context is computed using the softmax
function:

P(w | context) =
e

vw·vcontext

Â8w evw·vcontext
(3.1)

where:

• P: The likelihood of word w appearing within a context, defined by its surround-
ing n-grams.

• vw and vcontext: Vector representations of the word and its context, derived by
combining the vectors of n-grams within the word and its contextual environ-
ment.

FastText stands out for its compact and efficient embedding capabilities, particu-
larly in managing out-of-vocabulary words, securing its prominence in word embed-
ding applications. In our study, we aim to uncover the latent SQL language patterns
within textual data, using a training dataset composed of text strings. To this end, we
adopted the FastText model for word embedding. Its lightweight design enables rapid
data processing without compromising research quality, making it an ideal choice. In
SQL sentences, the arrangement of keywords and symbols is critical, and FastText
excels in capturing these patterns efficiently, avoiding the need for overly intricate
or resource-heavy models. A key strength of FastText is its ability to handle words
absent from the training data, allowing our model to adapt effectively to real-world
scenarios without requiring frequent retraining.

Non-local Network

The idea of attention, first developed in natural language processing [72, 73] to
identify global connections between inputs and outputs, is not included here. In recent
years, self-attention mechanisms have proven versatile across a range of applications.
Additionally, extensions of Convolutional Neural Networks (CNNs) have emerged,
incorporating non-local or long-distance dependencies [74] to model spatial relation-
ships among distant data elements.

In architectures employing non-local strategies, self-attention is typically not used
to determine attention weights between data points. Instead, these models rely on
a non-local interaction function to measure interactions across the input space, fa-
cilitating global relationships over varying distances. For an input represented as
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x 2 RH⇥W⇥C and an output as y 2 RH⇥W⇥C, corresponding to the input and output
feature maps, the non-local block is formulated as:

yi =
1

C(x)Â
8 j

f (xi,x j)g(x j) (3.2)

y = softmax(XT
W

T

q Wf x)Wgx (3.3)

Here, y results from applying the non-local operation across the entire dataset, with
Wq , Wf , and Wg representing weight matrices.

3.1.5 Approach

Proposed Conversion of SQL Queries into Graph Structures

To tackle this challenge, we adopt a graph-based methodology. Our approach fo-
cuses on normalizing SQL indentation in the provided input string. For instance,
consider the following raw input:

SELECT first_name, family_name

FROM employee e

WHERE department_id IN (SELECT department_id

FROM department

WHERE manager_name=‘Alex’)

(a) (b)
Figure 3.3: SQL commands and normalization into graph form.

To accomplish this objective, we begin by designing an algorithm to normalize
SQL statements, reformatting the input data accordingly. Drawing on standard SQL
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Figure 3.4: SQL graph structure sample.

formatting guidelines [75], we crafted a tailored set of rules to guide the reformatting
process. Our aim is to clearly isolate key elements, such as keywords and interrela-
tionships between components, laying the groundwork for generating node structures
and their connections in the graph during subsequent stages of the workflow.

1. Organize the SQL statement according to widely accepted SQL indentation stan-
dards.

2. Convert all words in the input query to uppercase.

3. Position each keyword on a new line, shifting the remaining content to the fol-
lowing line with an indentation level increased by one.

4. Align all opening and closing parentheses on the same line.

• Move the content between opening parentheses to the next line, indented by
one additional level.

• Set the indentation of closing parentheses to one level less than the preceding
line.

Upon standardizing the SQL statement structure, we produce a multiline format
where each line contains one or more words, with critical terms like SQL keywords
isolated on individual lines. The hierarchical organization is visually evident through
indentation depth, as shown in Fig. 3.3.

To transform this standardized format into a graph, we must precisely define ele-
ments such as nodes, edges, node features, and edge features. Within the context of
SQL statements, each line in the formatted indentation structure becomes a node in
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the graph. The indentation depth of each line serves as its hierarchical level index.
The connection rules between nodes are outlined as follows:

• Traverse the nodes sequentially from top to bottom.

• Link nodes at higher hierarchical levels to the closest node above them with a
lower hierarchical level.

• Connect nodes at the lowest hierarchical level in a top-to-bottom sequence.

These relationships are represented as edges in the graph, which are undirected,
as illustrated in Fig. 3.4. With nodes and edges established, a critical next step is to
generate features for each node. Using word embedding techniques, the content of
each node is mapped to a vector in a multidimensional space, serving as the node’s
feature set.

Overall Proposed Structure

Figure 3.5: Overview of the proposed model structure.

A primary obstacle in detecting SQL injection attacks is the ability to process and
differentiate between benign queries and those posing security threats. Our strategy
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addresses this by converting SQL statements into a graph structure, utilizing structural
insights to improve detection accuracy.

The proposed framework, depicted in Fig. 3.5, consists of three main stages. The
first stage, the graph modeler, transforms raw data into an indented format and builds
the graph structure, as shown in Fig. 3.5. The second stage generates node features
using word embedding techniques. The final stage involves a classifier that extracts
features from the graph network and performs classification.

In the initial stage, we restructured SQL commands into a more organized format,
placing significant keywords—such as SELECT, FROM, WHERE, JOIN—and other
syntactic components on separate lines, with indentation levels reflecting their in-
terdependencies. These indentation-based relationships enabled us to connect lines,
forming a graph where nodes represent individual lines and edges denote their inter-
connections based on the SQL statement’s content and structure. This graph forms
the basis of our graph-based methodology.

In the feature generation stage, depicted in Fig. 3.5, we employed the FastText
model to convert node content into 64-dimensional vectors. This process yields an
undirected graph complete with nodes, edges, and 64 features per node, encapsulating
the SQL statement’s internal relationships. This structure supports the application of
Graph Neural Networks (GNNs) for information propagation across nodes and edges,
enhancing the model’s capacity to identify subtle SQL injection traits through graph-
based learning and improving classification outcomes.

For the graph classification stage, we utilized graph convolutional layers due to
their proficiency in handling graph-structured data. Key benefits of graph convo-
lutions include their adaptability to graph data, ability to process large graphs, and
effectiveness with uncertain structures. By leveraging message passing between con-
nected nodes via edges, graph convolution enables the model to capture not only
node.

Module 1: Feature Extraction Module with Two Hidden GCN Blocks

We initiate our approach with a straightforward module featuring two hidden Graph
Convolutional Network (GCN) blocks, as illustrated in Fig. 3.6. Each block consists
of a graph convolutional layer, a normalization layer, and an activation function. The
model takes as input a graph with dimensions n⇥64, where 64 represents the feature
count per node and n varies as the number of nodes in each graph. Throughout the
process, the feature dimensionality per node is expanded to 128 and subsequently to
256. Following this expansion, the graph undergoes aggregation via a global mean
pooling layer, after which it is passed through two linear layers for classification.
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Figure 3.6: Module 1 - Structure of the graph convolutional network with two graph
convolutional blocks.

Module 2: Combination of Graph Convolution Blocks and a Non-Local Block

To elevate the model’s effectiveness, we investigated the integration of a non-local
network, a technique engineered to capture interactions across data regions, both
proximate and distant. This approach was adopted with the intent of enabling dy-
namic feature interactions within the graph, where features are first extracted and
refined through graph convolutional layers and global mean pooling to standardize
the data shape. Our goal is to enhance the model’s classification prowess and overall
efficacy for this specific task. Consistent with Module 1, the architecture of Module
2, shown in Fig. 3.7, incorporates two graph convolutional blocks to gather and refine
features, increasing the node feature count from 64 to 256 across these blocks. The
varying number of nodes in the graph poses both opportunities and hurdles, partic-
ularly in stabilizing the data shape. To address this, global mean pooling is applied
before the non-local block to ensure a consistent shape, facilitating dynamic feature
interactions.

Module 3: Feature Extraction Module with a Modified Non-Local Network
Using Graph Convolution Layers

In exploring the architecture of Graph Neural Networks (GNNs) further, we note
that GNNs adopt a framework focused on synthesizing local information. During
GNN convolutions, data at each node is exchanged with adjacent nodes via a message-
passing process. Consequently, a node’s information interacts only with nodes within
a limited range (k-distance) around it. Typically, each GNN layer aggregates local
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Figure 3.7: Module 2 - Combination model with graph convolutional blocks and a
non-local block.

(a)

(b)
Figure 3.8: Module 3 - A modified non-local module.

data from immediate neighbors, often within a single hop.
While stacking multiple layers could theoretically boost the model’s expressive

power—enabling distant nodes to communicate—increasing layer depth often intro-
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duces noise and fails to optimize information exchange effectively. Furthermore,
adding layers can lead to challenges like the over-smoothing problem [76] or the over-
squashing issue [77], which may hinder the model’s ability to learn and represent
intricate relationships within graph data.

Drawing from the traditional non-local network design, we propose a modification,
illustrated in Fig. 4.3, by replacing 1x1 convolution layers with GraphConv layers.
Originally, 1x1 convolutions apply linear transformations to feature data to reduce
dimensionality, enhance adaptability, and lower computational demands while pre-
serving essential information. Substituting these with GraphConv layers maintains
the linear transformation functionality but leverages the graph’s structure for added
benefits. This shift enables local information sharing among nodes before broader in-
teractions occur, reducing computational overhead and allowing the model to exploit
graph-specific features. Local elements can thus exchange data prior to engaging with
other groups.

A key consideration in adapting the conventional non-local structure with graph
convolution is ensuring a fixed node count for seamless reshaping and global inter-
actions. We address this by applying zero-padding, introducing unconnected nodes
with a value of 0 to stabilize the graph structure.

3.2 Towards an Efficient GCN Based on MultiHead
Attentative for Sign Language Recognition

3.2.1 Rationale
In this study, I focus on enhancing the performance of graph convolutional network

(GCN) architectures by incorporating advanced deep learning techniques, refining the
structure of convolutional layers, and adjusting the non-local mechanism to optimize
the processing of graph-structured data.

The selected experimental task is hand sign language recognition—an important
real-world application—while also constructing a dataset for the Vietnamese sign lan-
guage alphabet. The primary objective of this research is not only to improve the ef-
ficiency of GCN models for this specific problem but also to further demonstrate the
effectiveness and broad applicability of convolutional models on graph data.

Sign language serves as an essential communication tool for the deaf community,
playing a vital role in message transmission and social interaction. Yet, interpret-
ing sign language has presented a persistent challenge for the scientific community.
Earlier methods predominantly depended on sensors, but limitations in device practi-
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cality and efficiency have restricted their success. Recently, advancements in image
processing have opened up a promising new avenue. This research leverages im-
age processing to develop efficient classification models based on graph convolution,
aiming to minimize model parameter size and computational demands. We introduce
four graph convolution-based techniques, evaluated across three datasets: two pub-
licly available American Sign Language (ASL) datasets and a newly proposed Viet-
namese Sign Language (ViSL) dataset. Experimental outcomes reveal exceptional
performance, achieving accuracies of 99.53% on the ASL dataset, 99.97% on the
MNIST dataset, and 99.80% on the ViSL dataset. These models deliver high efficacy
without requiring specialized devices or sensors, outperforming many complex alter-
natives. The carefully curated ViSL dataset complies with Vietnamese Sign Language
standards and matches the performance of the ASL dataset. This work highlights the
substantial potential of graph convolution in image recognition tasks, particularly for
sign language, fostering improved communication and connection between the deaf
community and society.

3.2.2 Introduction
Communication is a cornerstone in the growth and evolution of biological com-

munities. The capacity to share information, ideas, and emotions is fundamental to
sustaining and enriching diverse groups, spanning human and animal species alike.
Throughout human history, a variety of communication methods have emerged. Be-
yond spoken and written language, people have employed tools like drawing, sculpt-
ing, gestures, and facial expressions to express messages. Among these, listening
and speaking are widely regarded as the most intuitive and accessible forms, even for
young children. However, for those with hearing impairments, partial or total loss of
auditory and speech abilities creates significant barriers to everyday interaction.

Hearing loss, whether affecting one or both ears, can stem from factors such as
genetics, aging, noise exposure, infections, ear injuries, or certain medications and
toxins. The World Health Organization (WHO) reports that, in 2024, about 5% of
the global population—approximately 430 million people, including 34 million chil-
dren—require hearing rehabilitation [78]. Projections suggest that by 2050, this figure
could rise to over 700 million, or 1 in 10 individuals worldwide. People with hearing
loss, irrespective of its cause, frequently face communication challenges in modern
times.

These language barriers profoundly affect the lives of individuals with disabilities.
Sign language stands as their primary mode of communication, bridging gaps caused
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by hearing and speech impairments. Yet, it remains underused and poorly understood
by those with typical hearing, creating a divide between the deaf community and
broader society—a challenge yet to be fully addressed. Increasingly, researchers are
drawn to developing communication aids for the deaf, seeking solutions to enhance
their social engagement.

Sign language, a natural, non-verbal, and visually driven communication system,
serves as the primary language for millions of deaf individuals globally. While over
300 distinct sign languages exist worldwide, varying by region and country [79], they
share common traits. Sign language comprises two key elements: finger spelling (
handshapes) and dynamic gestures (hand movements). Finger spelling uses specific
hand and finger positions to represent individual letters, while gestures add expres-
sive depth. This richness and variety in sign language expression present significant
hurdles for learning and application.

Researchers have traditionally approached this problem through two main strate-
gies: sensor-based and image-based methods. Sensor-based techniques require users
to wear devices like gloves or sensors to detect sign features, whereas image-based
methods process camera-captured images without user-worn equipment. In recent
years, hand gesture recognition has tilted toward image-based approaches, which of-
fer fewer user restrictions compared to earlier sensor-dependent methods.

Over time, researchers have applied a spectrum of techniques, from basic image
processing and comparison to advanced machine learning, including shallow CNNs
and deep learning models. These efforts have shown varying degrees of success in
mitigating communication challenges for the deaf. In this study, we propose graph
convolutional models to classify static signs in sign language, introducing enhance-
ments to improve feature extraction and model performance. We also present a new
dataset of static signs for Vietnamese Sign Language, meticulously designed to align
with Vietnam’s established conventions.

This chapter is structured as follows:

• Section 2: Reviews prior research efforts addressing this challenge.

• Section 3: Outlines the foundational techniques employed in this work.

• Section 4: Details the proposed methodology and its components.

• Section 5: Introduces the Vietnamese static gesture dataset, experiments, and
evaluates the proposed approach.

• Final Section: Offers conclusions and explores future research directions.
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3.2.3 Related work
Numerous prior studies have sought to create hand sign recognition systems by

integrating information processing with classification techniques. These efforts typ-
ically focus on capturing key hand attributes—such as position and shape—before
applying machine learning to develop classifiers. As discussed earlier, over the years,
researchers have explored hand sign recognition using a variety of devices and meth-
ods, broadly divided into two categories: sensor-based and image-based approaches.

Sensor-based studies have garnered significant interest within the research com-
munity. For example, Simin Yuan et al. [80] tackled Chinese Sign Language recog-
nition by employing Electromyography (sEMG) sensors on the right arm to gather
sEMG signals. These signals were used to train predictive models, including Ar-
tificial Neural Networks (ANN) and Support Vector Machines (SVM), achieving a
notable accuracy of up to 95.48%. Similarly, Cao Dong [81] utilized affordable depth
cameras, such as Microsoft’s Kinect, to collect data, applying segmentation and hi-
erarchical model-seeking techniques to pinpoint hand joint locations under kinematic
constraints. Their Random Forest model yielded over 90% accuracy for American
Sign Language (ASL) recognition. Another approach by Lucas Rioux-Maldague et
al. [82] combined depth and RGB images from the Kinect, processed via Deep Belief
Networks. Meanwhile, Watcharin Tangsuksant [83] used dual cameras to track six
hand points, computing triangle patches from marker triplets for ANN-based classi-
fication.

However, these methods require users to rely on specialized equipment, such as
sensors or gloves, or fixed systems that lack portability, posing practical challenges
and increasing costs. Additionally, many studies emphasize feature extraction from
hand sign signals without optimizing classification through Machine Learning (ML)
or Artificial Neural Network (ANN) models, resulting in less-than-optimal accuracy.

With advancements in machine learning and deep learning, researchers have turned
to processing images from widely available devices like smartphone cameras and we-
bcams. Jungpil Shin [84] estimated the coordinates of 21 hand points, applying SVM
and GBM models to classify ASL with 87.60% accuracy. Dewinta Aryanie [85] used
a kNN approach, flattening three color channels of input images and testing various k
values, achieving a peak accuracy of 99.8% with k = 3 on the ASL dataset. To boost
precision, complex image processing techniques have also been adopted. CM Jin [86]
employed Canny Edge detection and Speeded-Up Robust Features (SURF) for seg-
mentation, followed by classification using K-means clustering, Bag-of-Words, and
SVM, reaching 97.13% accuracy. Likewise, Tse-Yu Pan et al. [87] extracted features
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via Bag-of-Words with SIFT, Hu Moments, and Fourier Descriptors, achieving high
accuracy with SVM classification from standard camera inputs.

In recent decades, Convolutional Neural Networks (CNNs) have become a domi-
nant force in image processing and spatial data analysis. Researchers have leveraged
CNN-based classifiers for hand sign recognition, yielding impressive results. Many
approaches [88, 89, 90, 91] involve CNN architectures with single or multiple hidden
layers, processing RGB or grayscale images directly, significantly improving accuracy
over traditional ML models. V Jain [92] found that a single-layer CNN outperformed
SVM and nearly matched two-layer CNNs. Hybrid models combining CNNs with
traditional ML have also been explored. RG Rajan et al. [93] proposed a model
with parallel VGG19 and LBP streams, merging feature maps for SVM classification,
achieving 98.44% accuracy on the ASL dataset. HBD Nguyen [94] tested combi-
nations like HOG-LBP-SVM, end-to-end CNN, and CNN-SVM, with hybrid models
excelling at 98.36% accuracy. Capsule networks, as seen in Md Asif Jalal’s work
[95], offer another innovative approach to gesture classification.

Regarding diverse input types, studies have utilized RGB and depth images for
parallel network models. Research by Bhagat [96] and Aly [97] combined ML and
CNNs to extract features from these data types, achieving accuracies of 98.81% and
99.5% for hand gesture tasks.

Recently, graph convolutional methods [3, 98] have gained traction for processing
graph-structured data, earning acclaim for their feature extraction efficiency and high
performance across applications. However, a key challenge is the need to represent
input data as graphs. Converting traditional formats into graph structures requires
careful precision to retain essential data traits, ensuring effective feature extraction
and prediction. Alongside simpler models, researchers have employed deep learning
with transfer learning, leveraging pre-trained models from large datasets to accelerate
development. Studies [88, 99, 100, 101] have implemented prominent models like
VGG16, VGG19, AlexNet, ConvNeXt, EfficientNet, ResNet-50, VisionTransformer,
InceptionV3, and YoloV3. While effective in many domains, not all excel in classifi-
cation tasks. For instance, YoloV3 achieved only 95% accuracy, lagging behind basic
ML models or simpler CNNs, as noted in research reports.

3.2.4 Preliminaries

Attention mechanism

Scaled Dot-Product Attention

36



Scaled dot-product attention [68] is a mechanism that determines attention weights
through a scaled dot-product computation. The process unfolds as follows:

1. Similarity calculation: A dot product is performed between the query matrix Q

and the key matrix K to generate attention scores.

2. Scaling adjustment: These scores are divided by
p

dk to mitigate excessively
large values when dk grows, promoting gradient stability.

3. Weight standardization: The softmax function normalizes the scaled scores
into attention weights, ensuring their sum equals 1 and allowing probabilistic
interpretation.

4. Weighted value aggregation: The output is computed as a weighted sum of the
value matrix V , with the attention weights acting as coefficients.

The attention weight computation is expressed as:

Attention(Q,K,V ) = softmax
✓

QK
>

p
dk

◆
V. (3.4)

Multi-Head Attention
Multi-head attention [68] enhances the basic attention framework by enabling the

model to simultaneously focus on diverse representation subspaces. The procedure
includes:

• First, the queries (Q), keys (K), and values (V ) are individually transformed lin-
early to produce distinct representations for each head. These are then fed into
separate scaled dot-product attention layers.

• With h attention heads, h unique outputs are generated. Each head employs its
own learned weight matrices W

Q

i
,W K

i
,WV

i
, allowing it to emphasize different

facets of the input sequence.

• The outputs from all heads are concatenated and processed through a final linear
transformation Wo to revert to the original dimensionality.

The computation for each attention head is given by:

headi = Attention(QW
Q

i
,KW

K

i
,VW

V

i
). (3.5)

The complete multi-head attention output is formulated as:

MultiHead(Q,K,V ) = concat(head1, . . . ,headh)Wo. (3.6)
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Non-Local Network

The concept of self-attention first arose in Natural Language Processing (NLP)
[72, 73] to capture complex global relationships between input and output sequences.
In recent years, self-attention models have proven versatile across numerous applica-
tions, alongside the development of non-local or long-range dependency extensions
for Convolutional Neural Networks (CNNs) [102]. The non-local framework is care-
fully crafted to model interactions not just within local regions but also across distant
elements, enhancing the grasp of spatial connections and thereby improving feature
extraction and data processing efficiency.

Models employing non-local mechanisms frequently use self-attention to calcu-
late attention weights between data points, enabling global interactions irrespective
of their spatial separation in the input domain. Representing the input and output
feature maps as x 2 RH⇥W⇥C and y 2 RH⇥W⇥C, respectively, the non-local block’s
mathematical expression can be described as follows:

yi =
1

C(x)Â
8 j

f (xi,x j)g(x j). (3.7)

Alternatively, this can be expressed in matrix form:

y = softmax(X>
W

>
q Wf x)Wgx. (3.8)

where:

• y: vector represents the output after applying the non-local expression to the
entire dataset.

• Wq ,Wf ,Wg: are weight matrices.

3.2.5 Proposed models
To develop a system adept at recognizing hand signs and enabling flexible access

to everyday objects, we adopt an image-based approach. Within this framework, we
identify two core tasks: extracting and processing features from images and building
a classification model.

Originally envisioned as a solution to address classification through graph con-
volutional techniques, our methodology explores feature extraction, processing, and
classification using graph representations. The model’s architecture consists of three
key elements:
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1. Hand skeleton feature extraction: This stage concentrates on identifying criti-
cal features that depict the hand’s skeletal framework.

2. Graph synthesis feature injection: This step involves preprocessing to enhance
the feature set and create a graph structure incorporating these features.

3. Classification model: This component develops models optimized for classify-
ing graph-based representations.

This integrated strategy aims to deliver robust hand gesture recognition, facilitating
its practical application in real-world scenarios.

Figure 3.9: Overview of the proposed structure.

Hand Landmarks Extraction

As previously noted, the vocabulary of sign language consists of finger gestures,
where each letter is represented by a specific hand and finger configuration. The
hand’s form is predominantly shaped by its skeletal structure, comprising bones and
joints that create a foundational framework. Variations in hand shape, whether due to
motion or transformation, manifest as changes in this skeletal system. Thus, a deep
comprehension of hand shape is intricately tied to the skeletal framework’s structure,
and information about hand shape can be used to deduce the skeletal layout, and vice
versa.

In conceptual terms, the hand’s skeletal structure resembles a graph, with parallels
drawn between its bones and joints and a graph’s components. Here, joints act as
nodes, and bones function as edges linking these nodes within the skeletal graph.
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With this foundation, our first task is to extract features of the skeletal system. In a
graph context, each node depends on its connections and distinct attributes. Features
derived from images include elements like color and depth, but we prioritize the 3D
spatial positions of hand joints. Numerous reliable tools exist for extracting or esti-
mating these features from images, and we chose MediaPipe [103] for its compelling
advantages.

MediaPipe is a widely used tool in practical applications, valued for its efficiency,
reliability, and lightweight design across various devices. It excels in handling 3D
data, enabling precise feature generation for key hand point positions, making it ideal
for hand image processing. Using MediaPipe, we accurately identify 21 key points on
the hand from an image and estimate their 3D coordinates, establishing a strong basis
for building graph features of the hand’s skeletal structure in later steps.

Graph Synthesis Feature Injection

The effectiveness of a graph model’s classification hinges on the quality of its
constituent elements, particularly the node features, which in our case stem from the
graph synthesis feature injection process (see the workflow in Figure 3.9). To improve
these node features, we explored distributing hand feature points evenly around the
origin. After collecting these points’ attributes, we shifted the origin from a fixed
spatial position to one below the index finger. This adjustment was based on the
observation that extracted feature points tend to cluster in a specific region relative
to the origin. Repositioning the origin nearer the hand’s center minimizes changes to
this point during shape variations, while other points exhibit more significant shifts,
enhancing differentiation among feature indices as the hand transforms. This process
yields a feature matrix of hand landmarks with dimensions (21, 3) from the original
images and data.

To further enrich the graph’s information, we expanded the node features. Similar
to other data types, increasing available information lays the groundwork for an ef-
fective classification model. By adding distance data for each landmark, we create a
feature vector for the hand’s node shape, sized (21, 4), where ‘21’ reflects the number
of landmarks and ‘4’ indicates the features per landmark. This completes the node
feature representation.

For a full graph representation, we integrate node and edge information into a
unified network. Edge connectivity determines whether the graph is directed or undi-
rected; we opt for an undirected graph, allowing bidirectional access between nodes.
To support information flow in graph convolutional models, each node connects to
itself. Following MediaPipe’s connectivity sequence [104], we construct a sparse ad-
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jacency matrix of size (2, 42). We do not define inter-edge relationships, leaving edge
features unspecified and treating all edges equally.

Combining the landmark feature matrix (21, 4) with the sparse adjacency matrix
(2, 42) produces a complete graph representation capturing the hand’s spatial proper-
ties. This graph includes 21 nodes, where V denotes the set of 21 vertices representing
the nodes, and E represents the edges. The sparse adjacency matrix (2, 42) outlines
node connectivity, while the feature matrix X , with dimensions (21, 4), encapsulates
each node’s attributes, with each row corresponding to a node.

Proposed classification models

Type-1 model: Basic 2-layer graph convolutional model

Figure 3.10: Type-1 model structure.

In this research effort, aimed at creating a system based on graph classification
techniques, we begin by establishing a basic classification module (Figure 3.10) fea-
turing two hidden blocks of a graph convolutional network. Each block in this struc-
ture includes a normalization layer, a graph convolutional layer (GraphConv [105]),
and an activation function. As defined in the feature extraction and preprocessing
stages, the input consists of an undirected graph with 21 nodes linked by an adjacency
matrix E of size (2, 42), where each node possesses four unique features. Through
graph convolution, the feature space expands progressively, reaching 16 features in
the first hidden block and 64 features in the second. After feature extraction and
synthesis, the graph is aggregated using a global mean pooling layer before passing
through two dense layers for classification.

Type-2 Model: Enhanced 2-Layer Graph Convolutional Model
Starting with preprocessed input data comprising nodes—each defined by four dis-

tinct features: 3D spatial coordinates and distance from the origin—we noted that
these attributes reflect diverse aspects and may influence hand shape recognition dif-
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Figure 3.11: Type-2 model structure: Implementation of graph convolution
enhancements on the Type-1 model.

ferently. To improve the model’s performance, we conducted a deeper analysis of the
convolution mechanism within the GraphConv [105] layer and introduced targeted
improvements.

The core convolution process in GraphConv involves two key phases: message
passing and information integration. In message passing, data from adjacent ver-
tices is transmitted to the target vertex, followed by aggregation using functions like
"addition," "mean," or "max pooling." The aggregated information from neighbor-
ing vertices is then combined via a linear transformation to produce the final vertex
representations.

Recognizing the dispersed and varied nature of the input layer features, we added
an extra linear layer before the message passing stage. This step enables a transfor-
mation of the feature space, allowing the model to generate new representations by
integrating diverse, distinct features across multiple dimensions. This enhancement
strengthens the model’s ability to capture complex features and relationships within
the spatial and distance data, ultimately improving its overall performance.

f
(t)(v) = s
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Here:

• s : Represents an activation function.
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t

b
: Weight matrices for the respective transformations.

• N(v): The set of neighbors of vertex v.

• f
(t�1): The function from the previous time step.

The enhanced model (Figure 3.11) maintains the framework of the Type-1 model
but replaces the standard GraphConv layer with a revised version, incorporating the
improved convolution mechanism.

Type-3 Model: Enhanced 2-Layer Graph Convolutional Model with Skip-
Connection and Multi-Head Attention

Figure 3.12: Structure of the Type-3 model.

To improve model performance, we introduce an innovative architecture (Figure 3.12)
that integrates skip connections and multi-head attention mechanisms. Our primary
goal is to enhance the convolutional layer’s ability to extract information by empha-
sizing key node features and retaining maximum data across network layers.

To prioritize node interactions based on their importance, we incorporate an attention-
based module. This component calculates weights derived from feature relationships,
enabling the identification and assessment of essential features within the graph’s
nodes. This approach produces a refined graph representation, reducing noise and
highlighting critical data elements.

Following this focused representation from the attention mechanism, we process
the data using a graph convolution module. Combining attention with graph convolu-
tion enhances information handling across the graph. The graph convolution module
efficiently extracts and disseminates information throughout the network, utilizing the
sharpened representation from attention to create stronger feature representations for
each node.
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This module retains the adapted graph convolutional layer from Model 2 and in-
cludes three hidden blocks (Block 1 and Block 2), each featuring a graph convolu-
tional layer preceded by an attention layer. The first attention layer, before the initial
hidden block, uses two heads due to the limited diversity and complexity of node fea-
tures at this stage, allowing focus on significant inter-node relationships. After the
first hidden block expands features to 16 dimensions, the second attention layer em-
ploys four heads, enabling the model to address more complex feature interactions
and improve information extraction efficiency.

Moreover, skip connections are added to streamline the information flow. These
connections directly transfer data from the attention layer’s output, merging it with the
graph convolutional layer’s results. This ensures effective integration of the attention-
focused data with the convolutional output, maximizing the use of information from
both processes to yield the final representation.

The Proposed Model: Modified Non-Local Network with Graph Convolu-
tional Layer

Figure 3.13: Proposed model featuring a modified non-local block structure.

Upon analyzing the convolutional mechanism in GraphConv, we identified its re-
liance on edge connections for information propagation and aggregation as a limi-
tation. While effective for local information sharing among neighboring nodes, it
restricts interactions to immediate connections, hindering the model’s capacity to
produce novel feature representations. Theoretically, stacking multiple GraphConv
layers could address this, but practical implementation often leads to information ho-
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mogenization and noise. Research also indicates that excessive layering can cause
over-smoothing [76] and over-squashing [77] issues.

To overcome these limitations, we propose a tailored non-local block model de-
signed for direct graph data processing (Figure 3.13). Although graph sizes vary with
node counts, tasks like processing 21 hand joint points allow us to standardize data
size. We replace the original 1x1 convolutional layers with GraphConv layers, extend-
ing this change across the model. Initially, 1x1 convolutions performed linear transfor-
mations to reduce dimensionality, enhance flexibility, and lower computational load
while preserving key data. GraphConv layers, while also performing linear trans-
formations, leverage the graph structure, enabling local information exchange before
broader interactions. To ensure node interactions remain graph-specific, we carefully
manage data resizing.

Given the input node features’ low dimensionality (only 4 features), we increase
the internal feature dimensions to 128 within the block, then reduce them to 64 before
applying global mean pooling and classification.
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Chapter 4

Experiments, Result and
Discussion

4.1 Towards Lightweight Model Using
Non-local-based Graph Convolution Neural
Network for SQL Injection Detection

4.1.1 Datasets and Experiments
This study aims to develop two distinct model types: one prioritizing accuracy and

another optimized for inference speed.
The motivation for these models is twofold: First, we emphasize accuracy due to

its critical importance in identifying SQL injection attacks. Second, we target reduced
inference time, as real-world server systems must efficiently process a high volume
of requests within tight time constraints, ensuring responsiveness and compatibility
with practical hardware environments.

The experimental setup includes the following core elements:

• Accuracy evaluation on dataset-I: We assess the models’ precision in detecting
SQL injection attacks through extensive training and testing on dataset-I.

• Inference time analysis on both datasets: Recognizing the need for rapid pro-
cessing, we thoroughly measure the models’ inference times on dataset-I, se-
lected to evaluate efficiency under conditions requiring quick responses to nu-
merous requests.

Dataset

To evaluate our proposed models’ performance in terms of accuracy and inference
speed, we employ two datasets. HTTP servers typically handle requests from diverse

46



client applications, such as Android devices, web browsers, and desktop software,
involving operations like authentication and data retrieval from users and potential
attackers. For real-time malicious code detection, we implemented a two-layer se-
curity firewall at the server’s application layer. The initial layer, situated between
middleware and the router, leverages a dataset of collected malicious payloads [106,
107].

Sourced from Kaggle, the SQL datasets comprise raw data on SQL injection at-
tacks and benign traffic from various websites. After thorough cleaning, both datasets
include a label column classifying SQL queries, with 0 representing non-malicious
queries and 1 indicating malicious ones.

Dataset-I [106], termed SQL injection dataset I, is used to gauge the accuracy-
focused model’s effectiveness. It contains 30,873 entries, with 38% being malicious
SQL statements and 62% benign, gathered from SQL injection attacks and normal
traffic across websites, refined for detection purposes.

Dataset-II [107], known as SQL injection dataset 2, assesses the lightweight in-
ference time model’s improvements. A polished version of the Kaggle dataset, it
includes 19,537 benign entries (Label = 0) and 11,382 malicious entries (Label = 1),
over 1.6 times the benign count. Both datasets were divided into an 8:1:1 ratio for
training, validation, and testing, respectively.

Experimental Environment

All experiments in this study are conducted on the Google Colab server, harnessing
its robust computational resources for training and evaluating the proposed models.

The CPU specifications of the server are detailed as follows:

• Processor: Intel(R) Xeon(R) CPU @ 2.20GHz

• CPU Family: 6

• Model: 79

• Cache Size: 56,320 KB

• Cores: 1

• Siblings: 2

The experiments are tailored to address the complexities of deep learning-based
SQL injection detection, with the server’s setup supporting efficient parallel process-
ing and memory management, essential for training and assessing sophisticated mod-
els.
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To simulate real-world conditions, GPU usage is disabled during testing, reflecting
scenarios where servers must process requests without GPU support. This ensures a
thorough evaluation of model performance across diverse operational settings.

Metrics Performance

After training our proposed model on the training set, we evaluated its performance
on the test set using several metrics to measure its effectiveness in detecting SQL in-
jection. These metrics include accuracy during training and testing, precision, recall,
F1-score, and parameter count. The mathematical definitions of these metrics are
provided below.

The accuracy metric measures the proportion of correctly classified samples and
is expressed as:

Accuracy =
T P+T N

T P+T N +FN +FP
(4.1)

Precision, a vital indicator of the probability that a sample is correctly classified,
is defined as:

Precision =
T P

T P+FP
(4.2)

Recall, also known as sensitivity or the true-positive rate, reflects the fraction of
positive samples accurately identified. It is calculated as:

Recall =
T P

T P+FN
(4.3)

The F1-score, which balances precision and recall to provide a holistic evaluation
of model performance. is given by:

F1-Score =
2⇥Precision⇥Recall

Precision+Recall
(4.4)

In these formulas, TN denotes the true-negative rate, representing the number of
normal requests correctly identified. TP indicates the true-positive rate, correspond-
ing to the number of malicious requests accurately detected. FN represents the false-
negative rate, reflecting the number of normal requests misclassified, while FP de-
notes the false-positive rate, indicating the number of malicious requests incorrectly
predicted.

4.1.2 Evaluation of the proposed accuracy model
In this experimental analysis, we benchmark three proposed models—(1), (2), and

(3)—against a range of models, including an LSTM model, BERT variants, and vari-
ous machine learning models, to assess their effectiveness. The models evaluated are
detailed as follows:
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1. Proposed Model 1 (P1): Utilizes the original 2-GraphConv-layer module.

2. Proposed Model 2 (P2): Employs a 2-GraphConv-layer module augmented with
non-local blocks.

3. Proposed Model 3 (P3): Features a modified non-local block, substituting 1x1
convolutional layers with graph convolutional layers.

4. LSTM Model (M4).

5. BERT Models: bert_uncased_L-2_H-128_A-2 (M5) and bert_uncased_L-4_H-
256_A-4 (M6).

6. Machine Learning Models (18 models): Encompasses classifiers such as Ad-
aBoost (M8), Bagging (M9), Decision Tree (M10), Extra Trees (M11), K-Neighbors
(M12), Linear Support Vector Classification (M13), Logistic Regression (M14),
Multi-Layer Perceptron (M15), Multinomial Naive Bayes (M16), Nearest Cen-
troid (M17), Nu-Support Vector Classification (M18), One-vs-One (M19), One-
vs-the-Rest (M20), Passive Aggressive (M21), Linear Perceptron (M22), Ridge
(M23), SGD (M24), XGB (M25), and CNN (M7). All models were retrained
and tested on dataset-I to analyze correlation and efficiency.

For the experimental process, the three proposed graph convolutional models trans-
formed input data into graphs, with node features derived by embedding words into
64-dimensional vectors. Similarly, other models underwent preprocessing to con-
vert input data into 64-dimensional word embeddings. Machine learning (ML) and
Convolutional Neural Network (CNN) approaches were applied. The NLTK library
provided the English stop-word list, while sklearn’s CountVectorizer converted text
into vector representations based on word frequencies.

To evaluate the proposed models’ performance, experiments were conducted us-
ing five metrics: training accuracy, testing accuracy, precision, recall, and F1-score,
defined as follows:

• Training Accuracy: Represents the proportion of correctly classified data points
as SQL attacks relative to the total number of data points in the training set,
including both attacked and healthy SQL statements. High training accuracy
reflects effective learning from the training data.

• Testing Accuracy: Indicates the proportion of data points correctly identified
as SQL attacks compared to the total data points in the test set, encompassing
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both attacked and healthy SQL statements. High testing accuracy demonstrates
strong generalization to unseen SQL injection data beyond mere training set per-
formance.

• Precision: For predictions of positive cases (detecting SQL attacks), precision
is the ratio of true positives (correctly identified SQL injections) to all predicted
positives (including normal statements misclassified as attacks). High precision
signifies minimal errors in labeling normal SQL statements as malicious.

• Recall: For actual positive cases (SQL attacks), recall is the ratio of true pos-
itives (correctly identified SQL injections) to all actual positives (including at-
tacks misclassified as normal). High recall indicates effective detection of SQL
injections, reducing missed cases.

• F1-Score: The harmonic mean of precision and recall, providing a balanced
measure of model performance. A high F1-score reflects an optimal trade-off
between precision and recall, minimizing both false positives (normal statements
misclassified as attacks) and false negatives (attacks misclassified as normal) at
low rates.

In Table 4.1, the three proposed models—P1, P2, and P3—demonstrate excep-
tional performance across all evaluated metrics, achieving training and test accuracies
above 99.9%. These results outperform traditional models and architectures, such as
CNN (M7) and various machine learning (ML) approaches, and slightly exceed more
advanced frameworks like LSTM (M4) and BERT (M5, M6). This highlights their
remarkable capabilities in learning, generalization, and accurate prediction on un-
seen data. Among the proposed models, P2, which incorporates a non-local block
following a 2-layer graph convolution, stands out with a precision of 100%, indicat-
ing no instances where normal statements are misclassified as malicious. The LSTM
model (M6) also reaches peak precision, reflecting its strength in managing extended
sequences by capturing information from distant contexts. For recall, the proposed
models P1, P2, and P3 record impressive values of 99.92%, 99.83%, and 99.92%, re-
spectively. The nearest centroid classifier (M17) similarly excels in this metric, near-
ing perfection and suggesting minimal false negatives for normal statements alongside
a high detection rate for SQL attacks. However, balancing precision and recall is es-
sential. The proposed models, alongside contemporary architectures like LSTM and
BERT, achieve this equilibrium, with F1-scores surpassing 99%.

Among the three proposed models, Model P1, a straightforward graph convolu-
tional model with two layers, delivers exceptional results, exceeding 99.9% across
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Table 4.1: Experiments in Dataset-I for Proposed Accuracy Models with the
Dimension of Feature 64, Compared to the Other Models of LSTM, BERT,

Transformer, and ML.

Model Train Acc Test Acc Precision Recall F1-Score Param
Proposed 1 (P1) 99.94 99.97 100 99.92 99.96 99,201
Proposed 2 (P2) 99.98 99.93 100 99.83 99.92 99,209
Proposed 3 (P3) 99.92 99.94 99.92 99.92 99.92 29,153
Model 4 (M4) 99.70 99.51 100 98.73 99.35 107,905
Model 5 (M5) 99.88 99.80 99.81 99.66 99.73 11,171,074
Model 6 (M6) 99.87 99.88 99.89 99.78 99.84 172,929
Model 7 (M7) 98.22 96.04 98.96 90.70 94.65 174,273
Model 8 (M8) 93.04 93.43 84.39 97.66 90.54 -
Model 9 (M9) 97.93 92.20 89.32 90.37 89.85 -
Model 10 (M10) 98.33 92.00 89.85 89.47 89.66 -
Model 11 (M11) 98.33 93.26 90.49 91.94 91.21 -
Model 12 (M12) 87.32 84.52 88.27 75.70 81.50 -
Model 13 (M13) 98.10 94.28 88.69 96.22 92.30 -
Model 14 (M14) 96.34 93.39 85.41 97.12 90.89 -
Model 15 (M15) 98.32 95.79 90.80 98.17 94.34 -
Model 16 (M16) 96.88 95.06 89.96 97.04 93.36 -
Model 17 (M17) 78.34 77.30 41.23 100.0 58.38 -
Model 18 (M18) 85.40 83.95 61.31 95.55 74.69 -
Model 19 (M19) 98.10 94.28 88.69 96.22 92.30 -
Model 20 (M20) 98.10 94.28 88.69 96.22 92.30 -
Model 21 (M21) 98.00 94.86 90.06 96.38 93.11 -
Model 22 (M22) 97.74 94.00 91.54 92.82 92.18 -
Model 23 (M23) 96.68 93.63 86.15 97.02 91.27 -
Model 24 (M24) 96.78 93.63 86.15 97.02 91.27 -
Model 25 (M25) 93.94 93.67 86.15 97.14 91.32 -

Table 4.2: Experiments in Dataset-I for Proposed Lightweight Models with the
Dimension of Feature 16, Compared to the Other Models of LSTM, BERT, and

CNN.
Models TrainAcc TestAcc Precision Recall F1 IT(ms) Params
Proposed LW1 99.84 99.71 99.73 99.47 99.60 0.641906 2,209
Proposed LW2 99.90 99.80 99.64 99.82 99.74 0.878548 2,217
Proposed LW3 99.66 99.60 99.91 99.02 99.46 1.363550 5,345
Model 4 (M4) 99.65 99.54 99.73 99.03 99.38 1.390529 21,057
Model 5 (M5) 99.88 99.80 99.81 99.66 99.73 12.261137 4,386,178
Model 6 (M6) 99.87 99.88 99.89 99.78 99.84 26.610154 11,171,074
Model 7 (M7) 98.22 96.04 98.96 90.70 94.65 83.955687 174,273

all metrics with a modest parameter count of 99,201. This closely mirrors the per-
formance of Proposed Model 2 (P2), which integrates a 2-layer graph model with
a non-local network, achieving similarly high metrics, including a slightly superior
training accuracy of 99.98%. Both models maintain low parameter counts, highlight-
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Table 4.3: Experiments in Dataset-II for Proposed Lightweight Models with the
Dimension of Feature 16, Compared to the Other Models of LSTM, BERT, and

CNN.
Models TrainAcc TestAcc Precision Recall F1 IT(ms) Params
Proposed LW1 99.84 99.90 99.91 99.83 99.87 0.60049 2,209
Proposed LW2 99.85 99.87 99.91 99.73 99.82 0.863814 2,217
Proposed LW3 99.56 99.42 99.73 98.69 99.21 1.378740 5,345
Model 4 (M4) 99.58 99.70 100 99.22 99.61 1.329851 21,057
Model 5 (M5) 99.78 99.83 99.82 99.74 99.78 7.449558 4,386,178
Model 6 (M6) 99.72 99.87 99.91 99.74 99.82 26.236166 11,171,074
Model 7 (M7) 98.06 97.01 98.64 93.34 95.92 88.75645 174,273

(a)

(b)

ing the efficacy of combining graph structures with non-local approaches for high
accuracy. Proposed Model 3 (P3), a modified non-local model replacing 1x1 convo-
lutional layers with graph convolutional layers, yields comparable metrics to P1 and
P2. However, its parameter count drops significantly to 25,000—just a quarter of P1
and P2’s—making it far lighter than other models.

As depicted in Fig. 4.1, evaluation metric curves illustrate variations across epochs.
Examining epochs 20 and 50 for models P1, P2, and P3 reveals that test set perfor-
mance closely mirrors training set results, underscoring the strong learning and gen-
eralization abilities of these graph-based models. Overall, the Graph Convolutional
Neural Network (GCNN) approach proves more effective than both traditional models
(e.g., CNN and ML) and modern architectures (e.g., LSTM and BERT) for this task,
excelling in the quest for optimal accuracy.
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(c)

(d)

(e)

(f)
Figure 4.1: Illustrative graphs associated with accuracy, precision, recall, F1 score,
and loss for the three proposed models of P1, P2 and P3. (a) P1 at epoch 20. (b) P1

at epoch 50. (c) P2 at epoch 20. (d) P2 at epoch 50. (e) P3 at epoch 20. (f) P3 at
epoch 50.

4.1.3 Evaluation of the Proposed Lightweight Model
In the subsequent experimental phase, we refined the high-accuracy models P1, P2,

and P3 into lightweight variants—LW1, LW2, and LW3, respectively—tailored for
real-world hardware deployment. Our lightweight model criteria prioritize minimiz-
ing inference time, crucial for real-time processing, and reducing parameter counts
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while preserving accuracy. We achieved this by optimizing parameters in hidden lay-
ers, input data, and fully connected layers. Specifically, reducing input embeddings
from 64-dimensional to 16-dimensional vectors, limiting feature expansion in hid-
den layers, and downsizing fully connected layers resulted in models with far fewer
parameters yet sustained high accuracy. This optimization proved successful, with
models LW1 and LW2 achieving training precision, test precision, precision, recall,
and F1-scores above 99.4% on Dataset-I and over 99.8% on Dataset-II, as detailed in
Table 4.2 and Table 4.3.

The key goal of parameter reduction is to enhance processing speed, vital for server
systems managing numerous requests in tight timeframes. We tested inference time
by processing 2,000 data points per model, recording the duration, and averaging the
results to evaluate the performance-speed relationship academically.

Consequently, inference speeds were impressively swift, with LW1 and LW2 record-
ing 0.6 ms and 0.8 ms on both datasets—less than half the time of LSTM (M4),
30 times faster than BERT (M5, M6), and roughly 100 times quicker than various
machine learning models. Additionally, their parameter counts hover around 2,200,
markedly lower than comparable models, reinforcing the precision and efficiency of
graph-based approaches with reduced processing times.

However, Model LW3 exhibits a minor performance drop when feature dimensions
shrink from 64 to 16. Although it retains high scores on both datasets, all metrics
decline, and its parameter count rises 2.5 times compared to its baseline, contrasting
with a 0.25 factor at 64 dimensions.

For Dataset-II, comparisons with reference [108], shown in Table 4.4 and Table 4.5
at a 16-dimensional feature size, reveal that LW1 and LW2 outperform in test accu-
racy, recall, and F1-score, with precision only 0.05 lower. Meanwhile, LW3 under-
performs relative to the others at this dimension.

Table 4.4: Comparison of Experimental Results in Dataset-II Between Our Proposed
Models and the Model in [108].

Models Test Accuracy Precision Recall F1
LW1 99.90 99.91 99.83 99.87
LW2 99.87 99.91 99.73 99.82
LW3 99.42 99.73 98.69 99.21
[108] 99.86 99.96 99.66 99.81

In summary, the proposed models achieve high scores in precision, recall, F1, and
accuracy, coupled with a very small number of parameters. However, upon closer
evaluation, at the 64-dimensional feature level, model (P3) operates efficiently with
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Table 4.5: Comparison of Differential Results Between Proposed Models and the
Model in [108].

Models Test Accuracy Precision Recall F1
LW1 0.04 -0.05 0.17 0.06
LW2 0.01 -0.05 0.07 0.01
LW3 -0.45 -0.18 -1.04 -0.61

excellent results, especially in terms of significantly fewer parameters than the models
of P1 and P2. Nevertheless, after reducing the dimension to 16 to seek optimization
for speed, the number of parameters becomes unfavorable and even increases for this
model. On the other hand, proposed models of P1 and P2 consistently demonstrate
effectiveness across both datasets and different feature dimensions, reinforcing their
efficiency.

4.1.4 Analysis of model adaptability and computational
feasibility

Model adaptability

SQL injection attacks are highly unpredictable, exhibiting significant diversity and
complexity that cannot be anticipated in advance. Moreover, attack patterns and ex-
ploitation techniques continuously evolve over time, posing substantial challenges to
defensive mechanisms. Consequently, SQLi detection and prevention methods must
ensure adaptability to emerging attack variants while optimizing maintenance costs.

With this objective in mind, our study focuses on evaluating the flexibility and gen-
eralization capability of machine learning models when trained on various datasets.
Specifically, we train three proposed models using embeddings of 16 and 64 dimen-
sions from a given dataset and subsequently assess their performance on independent
datasets to examine their adaptability to unseen data.

Table 4.6 is a list of six datasets, including the two previously used datasets and
four additional ones.

Table 4.6: Number of samples in each database
DS 1 [109] DS 2 [110] DS 3 [111] DS 4 [112] DS 5 [113] DS 6 [114]

Sample count 30873 30905 148326 107439 98078 98271

We trained our models on dataset 3 [111] due to its large size, with the expectation
that the models would generalize well and perform effectively on other datasets. The
data was split into three subsets: training, validation, and testing, in an 8:1:1 ratio.
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Experimental results (Table 4.7) demonstrate that machine learning models trained
on dataset 3 exhibit remarkable flexibility and adaptability when tested on indepen-
dent datasets, including dataset 3 [111], dataset 4 [112], dataset 5 [113], dataset 6
[114], dataset 1 [109], and dataset 2 [110]. With 16-dimensional embeddings, all
three models (LW1-16, LW2-16, LW3-16) achieved an average accuracy exceeding
99%. Notably, LW1-16 recorded the highest test accuracy (99.59% on dataset 1) and
F1-scores ranging from 99.15% (LW2-16 on dataset 4) to 99.57% (LW3-16 on dataset
3). These results indicate that the models not only perform robustly on new data but
also maintain high performance despite variations among independent datasets.

Increasing the embedding dimensionality to 64 led to a substantial performance
improvement, particularly in adapting to new datasets. The LW1-64 model achieved
an average accuracy of 99.8% across all six test sets, with an F1-score reaching
99.85% on dataset 2. Meanwhile, LW2-64 recorded an impressive test accuracy of
99.91% on dataset 1 and an F1-score of 99.88% on dataset 2. Even LW3-64, which
showed slight variations on dataset 6 (F1-score 99.77%), maintained an overall out-
standing performance, with an average test accuracy of 99.8% and an F1-score con-
sistently above 99.66% across all datasets. This improvement not only reflects the
ability to learn richer representations from high-dimensional embeddings but also
confirms superior generalization, as the models effectively handle unseen features in
independent datasets.

A key highlight is that the models, particularly those trained with 64-dimensional
embeddings, did not experience significant performance degradation when transition-
ing from the training dataset (dataset 3) to new test sets, demonstrating their ability
to adapt to different data distributions. For instance, on dataset 5—an independent
dataset—LW2-64 achieved an F1-score of 99.81% and a test accuracy of 99.82%,
while LW1-64 performed even better, with an F1-score of 0.9974 and a test accu-
racy of 99.75%. Similarly, on dataset 2, all three 64-dimensional models maintained
F1-scores above 99.85%, proving their capability to handle diverse real-world scenar-
ios. These results confirm that training on a large and diverse dataset has enabled the
models to achieve high flexibility, making them well-equipped to counter emerging
SQLi attack patterns in unseen datasets.

Model computational feasibility

To evaluate the complexity and real-world deployability of the LW1, LW2, and
LW3 models, we consider two key factors: FLOPs (floating-point operations, re-
flecting computational cost) and the number of parameters (related to model size
and memory requirements). Table 4.8 indicates that at both 16- and 64-dimensional
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Table 4.7: Test accuracy and F1-score comparison for models Lw1, Lw2, and Lw3
with 16 and 64 embeddings (test accuracy | F1-score)

data 16-dimensional embedding 64-dimensional embedding
LW1 LW2 LW3 LW1 LW2 LW3

DS 3 99.36 | 99.38 99.53 | 99.55 99.55 | 99.57 99.82 | 99.82 99.86 | 99.86 99.81 | 99.82
DS 4 99.22 | 99.25 99.10 | 99.15 99.14 | 99.19 99.55 | 99.57 99.65 | 99.67 99.64 | 99.66
DS 5 99.37 | 99.34 99.47 | 99.45 99.45 | 99.42 99.75 | 99.74 99.82 | 99.81 99.76 | 99.75
DS 6 99.26 | 9935 99.45 | 99.52 99.49 | 99.55 99.78 | 99.81 99.81 | 99.83 99.74 | 99.77
DS 1 99.59 | 99.44 99.61 | 99.47 99.57 | 99.41 99.89 | 99.85 99.92 | 99.89 99.89 | 99.85
DS 2 99.56 | 99.40 99.59 | 99.44 99.54 | 99.38 99.89 | 99.85 99.91 | 99.88 9989 | 99.85

Table 4.8: Computational complexity of LW models (FLOPs | Parameters)

Model 16-dimensional embedding
(FLOPs | Parameters)

64-dimensional embedding
(FLOPs | Parameters)

LW1 2896.0 | 2209 39040.0 | 99201
LW2 5920.0 | 2217 41088.0 | 99209
LW3 16736.0 | 5345 66848.0 | 142401

embeddings, the models maintain relatively low complexity, ensuring fast process-
ing speed and effective responsiveness in real-world scenarios involving high request
volumes.

At the 16-dimensional embedding level, LW1 records only 2,896 FLOPs and 2,209
parameters, making it the most lightweight model in terms of both computational cost
and size. This suggests that LW1 can execute extremely quickly, making it ideal for
systems requiring real-time responses. LW2 exhibits a slight increase to 5,920 FLOPs
and 2,217 parameters, yet remains within a low complexity range, ensuring that pro-
cessing speed is not significantly impacted despite the added complexity. Mean-
while, LW3, with 16,736 FLOPs and 5,345 parameters, is relatively heavier but still
lightweight enough to be deployed on resource-constrained devices, with processing
times expected to remain suitable for practical applications.

At the 64-dimensional level, model complexity increases to support enhanced learn-
ing capabilities while maintaining computational efficiency. LW1-64 reaches 39,040
FLOPs with 99,201 parameters, LW2-64 registers 41,088 FLOPs and 99,209 param-
eters, while LW3-64 records 66,848 FLOPs and 142,401 parameters. Although these
values are significantly higher than those at the 16-dimensional level, the FLOPs re-
main moderate compared to more complex deep learning models, which often require
millions of FLOPs. This indicates that even in the 64-dimensional configuration, the
models remain sufficiently fast for real-time batch request processing, particularly
when deployed in distributed systems or on optimized hardware.
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A notable observation is that the increase from 16 to 64 dimensions does not lead
to an exponential rise in complexity but rather follows a reasonable linear progres-
sion, balancing performance (as demonstrated in evaluation results) and processing
speed. With FLOPs remaining below 70,000 (in LW3-64) and parameter counts op-
timized below 150,000, these models are well-suited for real-world deployment, par-
ticularly in SQLi detection applications that demand high-speed processing at scale.
Furthermore, their compact parameter size reduces memory requirements, facilitating
seamless integration into production systems without necessitating expensive special-
ized hardware. In summary, all three models, at both 16- and 64-dimensional levels,
exhibit outstanding potential in terms of speed and practicality, making them well-
equipped to handle millions of requests in real-world scenarios without overloading
system resources.

4.1.5 Conclusion for Towards Lightweight Model Using
Non-local-based Graph Convolution Neural Network for
SQL Injection Detection

Throughout this work, we have thoroughly examined and compared 25 different
models, spanning from traditional machine learning models to the latest transformer-
based models, LSTM, all in the context of SQL injection detection, specifically the
proposed graph models. Our analyses revealed that while transformer models, LSTM,
and BERT may achieve higher accuracies, they often come with the drawback of
significantly higher computational demands. In contrast, classical machine learn-
ing models, especially demonstrated remarkable efficiency, balancing high detection
accuracy with lower inference time. In the task of SQL injection detection, we suc-
cessfully constructed a graph network, a novel approach in this context. Through the
principles of node creation and node connection, utilizing fastText for words embed-
ding into vectors, each SQL statement is defined as a graph. We proposed two deep
learning models based on graph convolution and variation of graph convolutional
layer in non-local newtork. These models demonstrated extremely high accuracy, ex-
ceeding 99%, with a very small model size. The inference time of the models was
significantly reduced, only half or one-fifth of traditional models, and even one-tenth
of NLP processing models, with the proposed model (P1) being a graph classification
model with 2 GCN layers and model (P2) being a graph classification model using
non-local graph convolutional layers. These models were tested on datasets I and II,
comparing them with 22 different models. The results showcased improved accuracy,
considerably fewer model parameters, and astonishingly fast inference speeds of less
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than 1ms for the proposed graph models of P1 and P2 in SQL injection detection.
Both models demonstrated consistency across different datasets and feature dimen-
sions, affirming their effectiveness. As for proposed model P3 operated effectively
and delivered excellent results, particularly with significantly fewer parameters com-
pared to the two preceding proposed models. However, after reducing the dimension
to 16 to optimize for speed, the number of parameters became unfavorable and even
increased for this model. In conclusion, our study not only provides a comprehensive
comparison of SQL injection detection models but also introduces a novel, efficient
approach. This approach has potential applications in real-world cybersecurity sys-
tems. We believe that our contributions lay the groundwork for further research in
this area, stimulating the development of even more effective and efficient systems
for detecting and mitigating SQL injection attacks.

4.2 A New Efficient Optimized Graph Convolutional
Neural Network based Multi-Head Attentative for
Sign Language Recognition

4.2.1 Datasets and Experiment

New dataset: Vietnamese sign language dataset (ViSL)

Figure 4.2: Vietnamese sign language (ViSL) dataset.

This study presents a groundbreaking effort in sign language research: the creation
of a detailed Vietnamese Sign Language (ViSL) dataset. While most existing datasets
focus on American Sign Language (ASL) or English alphabetic symbols, there is a
notable absence of datasets designed for the unique linguistic and cultural features of
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Table 4.9: Vietnamese sign language (ViSL) dataset properties

Property Detail
Dataset images and labels • Total images: 118,800

• Labels: 33

• 23 static letters (A-Y)

• 10 numbers (0-9)

• Images of each label: 3600
Format JPG

Size of image 1080x1920

Color schema RGB

Vietnamese sign language. To address this gap, our work seeks to develop a carefully
constructed dataset that captures the depth and variety of Vietnamese sign language.

The data collection process was executed with precision to ensure both diversity
and fidelity. The steps involved are outlined as follows:

1. Data acquisition: We gathered 12 datasets in total, split evenly into 6 datasets
for the Vietnamese alphabet and 6 for numbers. Consistency in sign execution
and positioning was maintained throughout the collection process. Participants
were organized into balanced groups, each tasked with recording videos for 33
characters, with each character captured in two 30-second videos.

2. Video capture process: Each video required subtle hand movements to vary the
hand’s orientation, ensuring comprehensive coverage. After recording, partici-
pants performed cross-checks to verify that the quality and progress met estab-
lished standards. Involving multiple individuals enriched the dataset with diverse
perspectives and angles, enhancing its representativeness.

3. Classification and annotation: Post-collection, the data was sorted and labeled
to enable accurate model training and improve recognition performance. Precise
classification and labeling of each frame were critical to this step.

Robust data collection is essential for effective hand gesture recognition models.
To ensure quality, we enforced specific requirements: subtle hand rotations during
capture to expand gesture variety and improve model generalization; well-lit settings
with minimal background clutter to reduce noise and focus on gestures; standardized
use of the left hand with the palm facing the camera to prevent misinterpretation;
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and uniform practices among collectors to maintain consistency and dataset integrity.
Adhering to these rigorous guidelines fosters a high-quality dataset capable of training
reliable gesture recognition models, yielding enhanced accuracy and performance.

After individual data collection, group cross-checking was conducted to confirm
the accuracy and completeness of each video before advancing to frame extraction.
Extracted frames for each character were organized into a folder structure to stream-
line feature extraction using MediaPipe, supporting subsequent steps. During ex-
traction, frames were resized to a maximum width of 1920px while preserving their
aspect ratios.

Our dataset stands apart from existing sign language datasets in several ways. It in-
cludes Vietnamese-specific characters like “�,” absent from the English alphabet, and
excludes non-Vietnamese characters for a focused representation. These distinctions
make it a vital resource for building robust Vietnamese sign language recognition
models. A key strength is its reusability as the first comprehensive Vietnamese sign
language dataset published, offering potential for expansion and application in areas
like deep learning and machine learning. However, it currently lacks dynamic char-
acters, a limitation tied to the model’s focus on static frames rather than sequences
forming full signs. Future work will aim to incorporate dynamic gestures to advance
the model’s capabilities.

The resulting images meet strict quality criteria, showcasing clear hand gestures
free from artifacts like streaks, blur, or noise.

The dataset consists of 118,800 meticulously curated images representing 33 unique
labels: 23 static letters from A to Y, 10 digits from 0 to 9, and the Vietnamese let-
ter “�.” This inclusion enhances the dataset’s utility and highlights its ability to re-
flect Vietnamese sign language nuances. Data was collected from seven team mem-
bers—male and female—ensuring a diverse and representative sample. Captured im-
ages meet high standards, free of distortions, and vary in angle, position, and hand
size (considering finger and palm dimensions). Stored in “.jpg” or “.jpeg” formats,
image sizes range from 720 x 1280 to 1920 x 3413 pixels, using the RGB color model
(see samples in Figure 4.2).

Additionally, the dataset features 33 static Vietnamese characters, differing from
English-based datasets by excluding “w,” “f,” “j,” and “z” while adding “�” to reflect
Vietnamese traits. Looking ahead, we plan to include letters like “´,” “â,” “ê,” and
“ô,” represented through behavioral sequences, a feature unique among sign language
datasets. This dataset marks a pivotal advancement in sign language recognition tech-
nology, particularly for Vietnam. Its availability paves the way for researchers and de-
velopers to devise innovative deep learning and machine learning solutions tailored to
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Vietnamese sign language. Furthermore, it establishes a benchmark for future dataset
development, underscoring the value of cultural inclusivity in technological progress.

Evaluation datasets: ASL and MNIST datasets

(a) (b)
Figure 4.3: Experimental datasets. (a): ASL dataset, (b): MNIST dataset

In this research effort, we expanded our evaluation by including two additional
hand sign datasets alongside our proposed Vietnamese dataset. These datasets were
employed to test the effectiveness of our proposed models, offering valuable insights
into their performance while deepening our understanding of hand sign traits, ulti-
mately enhancing the robustness of our models.

The first dataset [109] is a comprehensive collection of 87,000 images grouped
into 29 classes, representing the 29 letters of American Sign Language (ASL) from A
to Z (Figure 4.3a). Each image is sized at 200x200 pixels, providing a substantial and
varied resource for assessing model performance. Beyond detailed hand sign data, it
includes three unique classes—SPACE, DELETE, and NOTHING—crucial for prac-
tical applications and enriching our grasp of sign classification and processing.

The second dataset [110], known as Sign Language MNIST (Figure 4.3b), is a
publicly available resource from Kaggle, offering a fresh perspective on American
Sign Language analysis. It features 24 static alphabet classes (omitting J and Z due
to their dynamic nature), with a total of 27,455 images at 28x28 pixels. Modeled af-
ter the classic MNIST dataset, it replaces handwritten digits with hand sign images.
Utilizing this dataset allowed us to benchmark model performance across diverse clas-
sification tasks, improving our comprehension of the complexity and variety of ASL
hand signs.
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Experimental Environment

All experiments in this study were performed on Google Colab servers, leveraging
their robust computational capabilities for training and evaluating our models. The
CPU specifications of the server are detailed below:

• Processor: Intel(R) Xeon(R) CPU @ 2.20GHz

• CPU Family: 6

• Model: 79

• Cache Size: 56,320 KB

• Cores: 1

• Siblings: 2

The experiments were carefully crafted to meet the sophisticated requirements of
deep learning-based image classification. The server’s setup supported efficient mul-
titasking and memory management, essential for successfully training and testing in-
tricate deep learning models.

Metrics Performance

After training our proposed model on the training dataset, we evaluated it on a
separate test set, calculating several metrics to gauge its ability to recognize hand
signs. These metrics include accuracy during training and testing, precision, recall,
F1-score, and parameter count.

Accuracy measures the proportion of correctly classified samples, determined as
the ratio of true positives (TP) plus true negatives (TN) to the total sample count:

Accuracy =
T P+T N

T P+T N +FN +FP
. (4.5)

Precision reflects the fraction of true positive samples correctly identified out of
all samples classified as positive:

Precision =
T P

T P+FP
. (4.6)

Recall indicates the share of true positive samples correctly classified relative to
all actual positive samples:

Recall =
T P

T P+FN
. (4.7)
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The F1-score provides a balanced evaluation of precision and recall, calculated as
their harmonic mean to assess overall model performance:

F1 Score =
2⇥Precision⇥Recall

Precision+Recall
. (4.8)

In these formulas, TP (True Positive) signifies the count of correctly identified
positive samples, TN (True Negative) denotes correctly identified negative samples,
FN (False Negative) represents positive samples misclassified, and FP (False Positive)
indicates negative samples misclassified.

4.2.2 Evaluation of the proposed model accuracy

Table 4.10: Experimental results on two datasets for four models

ASL dataset MNIST dataset
Model Train

Acc
Test
Acc

Pre
ci-
sion

Re
call

F1 Train
Acc

Test
Acc

Pre
ci-
sion

Re
call

F1 Param
eters

Type-1 98.36 98.72 98.73 98.72 98.72 83.77 87.78 88.45 88.78 87.79 6928
Type-2 98.29 98.73 98.75 98.73 98.73 91.42 94.44 94.82 94.44 94.41 8308
Type-3 99.66 99.16 99.17 99.16 99.16 99.46 99.17 99.22 99.17 99.17 41248

Proposed 99.98 99.53 99.54 99.53 99.53 99.92 99.97 99.97 99.97 99.97 26208

In this research endeavor, we undertook a holistic evaluation of the efficacy of four
distinct classification models across two heterogeneous datasets: one expansive (ASL
dataset) and one diminutive (MNIST dataset). These models, denoted as Type-1,
Type-2, Type-3, and the Proposed-Model, were scrutinized with the aim of discerning
the optimal model for classification tasks.

Initiating with the Type-1 model, it marks a pivotal stride in utilizing a rudimen-
tary framework comprising two fundamental GraphConv layers. While demonstrating
commendable efficacy on the ASL dataset, boasting Train accuracy, Test accuracy,
Precision, Recall, and F1-score metrics all surpassing the 98% threshold, its per-
formance wanes significantly when confronted with the notably diminished MNIST
dataset, registering a mere 87.78% accuracy on the test subset. This emphasizes
a negative impact resulting from limited data availability, thereby diminishing the
model’s effectiveness in comparison to the MNIST dataset. Despite its modest pa-
rameter count, tallying a mere 6928 parameters, this attribute may be construed as an
advantage for applications constrained by computational resources.

In a bid to augment model performance via convolutional logic refinements within
the GraphConv layer, the Type-2 model has garnered superior outcomes compared
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Table 4.11: Comparison of experimental
results in ASL dataset between our
proposed model and other studies

Method Related
study

Acc

SVM [84] 87.60%
Light GBM [84] 86.12%
EfficientNet [115] 94.30%
AlexNet [116] 94.47%
ResNet-50 [116] 98.88%
AlexNet [99] 99.39%
GoogLeNet [99] 95.52%
ConvNeXt [100] 99.51%
AlexNet [100] 99.50%
Vision trans-
former

[100] 88.59%

EfficientNet [100] 99.95%
ResNet-50 [100] 99.98%

Modified non-
local network
with GCN

Our pro-
posed

99.53%

Table 4.12: Comparison of experimental
results in MNIST dataset between our

proposed model and other studies

Method Related
study

Acc

HOG+SVM (linear
kernel)

[117] 90.71%

Random Forest [118] 65.57%
SVM (linear kernel) [118] 79.83%
MLP (2 hidden layers) [118] 75.68%
Shallow CNN [119] 95.26%
The single layer CNN [92] 97.34%
The double layer CNN [92] 98.58%
LeNet [120] 82.19%
CapsNet [120] 88.93%
Capsnet augmented [120] 95.08%
Deep CNN [92] 97.62%

Modified non-local
network with GCN

Our
pro-
posed

99.97%

to its Type-1 counterpart across both datasets. Across the ASL and MNIST datasets,
this iteration has achieved performance benchmarks of 98.73% and 94.44% respec-
tively, with a marginal uptick in parameter count to 8308. This enhancement can be
ascribed to the model’s adaptability and heightened generalization prowess when ef-
fectuating GraphConv layer transformations. However, the model continues to reflect
the repercussions of data constraints, albeit exhibiting improvement over the Type-1
model.

The Type-3 model, iteratively honed from the Type-2 variant by integrating method-
ologies such as inter-layer skip connections and attention mechanisms for fine-grained
feature node processing, has markedly surpassed its antecedents, notably on the MNIST
dataset. Despite a substantial escalation in parameter count to 41248, this model has
demonstrated consistent efficacy, with both datasets breaching the 99% threshold,
namely, 99.16% for the ASL dataset and 99.17% for the MNIST dataset. This under-
scores the salient impact of input data diversity within each hidden layer on overarch-
ing performance.

Lastly, the Proposed model has eclipsed its predecessors on both datasets, consis-
tently attaining above 99% on the training subset and 99.53% for the test subset of

65



the ASL dataset, along with a staggering 99.97% for the MNIST test subset. Despite
featuring a mere 26208 parameters, approximately 60% fewer than the Type-3 model,
its precision substantially outshines on both training datasets, even under data con-
straints. This phenomenon may mirror the efficacy of leveraging a non-local network
conjoined with graph data amalgamation, facilitating adept exploitation of global spa-
tial information and inter-data point relationships.

Our experimental results have demonstrated that within similar studies utilizing
the same dataset, our proposed models outperform many others, particularly machine
learning models. Leading models such as Resnet50 and EfficientNet in other practical
applications also achieve accuracy levels not significantly divergent from our propos-
als. Notably, their high performance not only manifests in classification prowess but
also in their compactness, utilizing fewer than 50,000 parameters. These proposed
models not only enable high performance but also minimize resource requirements,
rendering our models flexible and easily deployable across various devices and plat-
forms. This attests to the effectiveness and soundness of the approach presented.

Figure 4.4 depicts the evolution of evaluation metrics across epochs for the four
models on ASL dataset and MNIST dataset. Through these curves, we gain an
overview of each model’s performance. Clearly, the proposed model consistently
outperforms others, as metrics such as Train accuracy, test accuracy, Precision, Re-
call, and F1 remain consistently high with significant deviations from other models.
Notably, this model tends to converge faster, exhibiting steep gradients in early stages
and early stability in subsequent stages. Additionally, we observe good alignment be-
tween evaluation results on the test and training sets, indicating efficient learning and
generalization capabilities based on the proposed method. Similar analyses can be
conducted when considering the performance of each epoch on dataset 2.

Experiment results on this dataset reveal significant performance differences be-
tween the two proposed models and the other two models, as well as significantly
faster convergence rates. From these analyses, it can be concluded that the applica-
tion of proposed methods not only yields good performance in experimental models
but also in similar studies, playing a crucial role in identifying the most suitable model
for the problem at hand.

4.2.3 Valuation proposed model performance on Vietnamese
sign language (ViSL) dataset

Building upon previous studies with publicly available datasets, we conducted a
series of experiments on a self-constructed dataset of Vietnamese sign language. The
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Figure 4.4: Graphs showing Accuracy and Loss metrics for Models 1, 2, 3, and the
proposed model on the ASL and MNIST datasets, with (a, b) for ASL dataset

accuracy and loss, (c, d) for MNIST dataset accuracy and loss, and (e–h), (i–l) for
training and testing performance metrics of each model on ASL and MNIST

datasets, respectively.

Table 4.13: Performance comparison of different models

Model Train accuracy Test accuracy Recall F1-score Parameters
Type-1 98.32 99.06 99.07 99.06 8601
Type-2 97.99 99.02 99.03 99.02 8893
Type-3 99.79 99.71 99.71 99.71 41833
Proposed 99.95 99.80 99.80 99.80 26793

results (Table 4.13) demonstrate that the models we investigated, particularly the pro-
posed model, achieved outstanding performance in classifying hand gestures.

There were no significant differences in evaluation metrics when conducting ex-
periments on the Vietnamese dataset compared to publicly available datasets. Both
models continued to exhibit excellent results on the Vietnamese dataset, with the pro-
posed model maintaining its status as the best-performing model across all evaluation
metrics. The accuracy of the proposed model on both the training and test sets was
99.95% and 99.80%, respectively, surpassing the type-3 model with only 99.79% and
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Figure 4.5: Confusion matrix of the proposed model on the test set of the
Vietnamese Sign Language (ViSL) dataset.

99.71%. Through the confusion matrix (Figure 4.5), only a minimal amount of data
is mislabeled.

From visual observations, we noticed that the Vietnamese sign language gesture
dataset and the English sign language gesture dataset share many similarities in the
representation of alphabets. Our dataset was meticulously constructed, and its size
does not differ significantly from publicly available datasets. Experimental results
show that the accuracy of the experimented models is comparable, reinforcing the
effectiveness of our research methodology and the quality of the dataset we have
constructed.

4.2.4 Conclusion for A New Efficient Optimized Graph
Convolutional Neural Network based Multi-Head
Attentative for Sign Language Recognition

In this study, we approached this problem using image processing techniques from
common devices such as webcams and mobile cameras to recognize signs from vari-
ous sign languages. However, instead of directly processing raw image data, we em-
ployed techniques to estimate the coordinates of hand joints, combined with the con-
nectivity structure of these hand bones to construct data as a graph structure. To enrich
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graph features with the aim of enhancing model performance, processes such as deci-
sion altering of coordinate origins and feature augmentation within each graph node
were applied. With this classification model, we expect to apply graph convolution-
based models to address the problem of recognizing complex hand shapes. As an-
ticipated, all four models studied, including: (1) the "Basic 2-Layer Graph Convolu-
tional Model consisting of 2 hidden blocks of a graph convolutional network", (2) the
"improvement based on model (1) by adding 1 linear layer before the message pass-
ing process in the basic GraphConv convolution implementation", (3) the "enhance-
ment of model (2) by combining skip-connection + multi-attention before entering the
graph convolution to optimize information processing on the graph", and the proposed
model, "a variant of the non-local network with replacing 1x1 convolutional layers
with graph convolutional layers to allow local information sharing between compo-
nents before interacting with other components", all achieved outstanding results for
the classification task. Particularly, models type-3 and proposed achieved evaluation
metrics above 99.9% on the publicly available ASL datasets and consistently across
all metrics. Experimental results also demonstrate that our models yield compara-
ble or superior effectiveness compared to many studies in the same field. A notable
point of all four models we studied is their extremely lightweight size, especially the
proposed model with the highest accuracy but using only 26793 parameters.

Furthermore, considering the current reality where there are not many carefully
constructed and comprehensive datasets available for Vietnamese sign language, we
introduced a new dataset called VSL (Vietnamese Sign Language). The dataset com-
prises over 50,000 images and 33 classes built with diversity and compliance with the
guidelines outlined in the official documentation for sign language in Vietnam. The
proposed models also exhibited excellent performance on this new dataset, akin to the
results obtained when experimenting with publicly available ASL datasets.

We envision that this research will have a significant impact and contribution to the
field, serving as a foundation for building more accurate, convenient, and accessible
techniques and devices to address challenges for sign language users and communi-
ties. In the future, we hope not only to conduct research as experiments in recognizing
standard characters but also to expand it to include special characters combined with
gestures. At the same time, we aim to develop complete device models that can be
easily deployed and accessed by individuals in the community.
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4.3 Summary

Summary and Comprehensive Evaluation

In this study, we have demonstrated the effectiveness of Graph-Level Representa-
tion Learning in real-world problems through two approaches: applying Graph Con-
volutional Networks (GCN) to SQL Injection Detection and improving graph-based
models to enhance performance in hand recognition tasks. The experiments have
shown that deep learning on graphs not only exploits complex relationships among
data components but also provides a powerful approach to solving problems with in-
tricate spatial structures.

Effectiveness of Graph Convolutional Networks in SQL Injection Detection

In the first part of our study, we utilized GCN to detect SQL Injection attacks by
modeling SQL queries as graphs. Experimental results indicate that GCN outper-
forms traditional methods such as Random Forest and SVM. Specifically, the model
achieved an accuracy of 99%, surpassing baseline models while significantly reduc-
ing the false positive rate. This confirms that leveraging relationships among query
components enhances classification capability and improves the reliability of attack
detection.

One of the key advantages of graph-based models is their superior generalization
compared to sequence-based models. Traditional methods often rely on recognizing
known attack patterns and struggle with detecting new SQL Injection variants. In
contrast, a graph-based approach enables the model to learn the fundamental structure
of queries, allowing it to identify both known and previously unseen attack patterns.

Enhancing Graph-Based Models for Hand Recognition

In the second part of our study, we improved the GCN architecture to better suit
the hand recognition task. Representing hand skeletons as graphs yielded signifi-
cant improvements. By integrating spatial and temporal features into a deep learning
framework, the model achieved a considerable accuracy boost compared to traditional
methods such as CNN and LSTM. Experimental results show that the improved model
reached an accuracy of 99.53%.

A crucial enhancement in our model was the incorporation of an attention mecha-
nism to assign importance weights to individual nodes within the graph. This helped
the model focus on critical finger joints during gesture recognition, reducing noise and
improving generalization. Additionally, the optimized model was designed to lower
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computational complexity, accelerating inference speed without sacrificing accuracy.
This is particularly beneficial when deploying the model on resource-constrained de-
vices.

Potential Applications and Expansion

The findings of this research open up numerous practical applications. The use
of deep learning on graphs is not limited to the two problems discussed but can be
extended to various fields such as social network analysis, fraud detection in financial
transactions, supply chain analysis, and even healthcare, where data can be repre-
sented as relational networks.

Furthermore, the graph model improvements proposed in this study can be adapted
to suit different types of data. For example, in cybersecurity, rather than focusing
solely on SQL Injection, the model could be extended to detect other types of attacks
such as XSS or RCE by constructing appropriate graph representations. Similarly, in
computer vision, graph-based models could be applied to human gesture recognition
or motion analysis in video sequences.

This study has demonstrated the effectiveness of using GCN in real-world appli-
cations while proposing significant model enhancements to improve performance.
Experimental results indicate that deep learning on graphs not only provides a better
representation of complex data relationships but also serves as a powerful and flexi-
ble approach for addressing various challenges. Future research directions may focus
on further optimizing computational efficiency and exploring unsupervised learning
techniques on graphs to reduce dependence on labeled data.
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Chapter 5

Conclusion

5.1 Recapitulation
In this study, we proposed and evaluated a deep learning approach based on Graph-

Level Representation Learning to enhance Graph-Aware Applications. The proposed
model leverages structural information from graphs rather than relying solely on indi-
vidual node features, thereby improving generalization ability and model performance
on real-world tasks.

The core objective of this study is to explore global-level graph representations to
optimize the processing capabilities of Deep Neural Networks (DNNs) when applied
to complex structured datasets. To demonstrate the effectiveness of this approach, we
applied the proposed model to two critical tasks:

• SQL Injection detection by representing SQL queries as graphs.

• Hand gesture recognition using skeletal data.

Experimental results indicate that the proposed method not only improves accuracy
but also allows the system to better capture relationships between data components,
particularly in non-Euclidean structured data such as graphs.

Specifically, in SQL Injection detection, transforming SQL queries into graph rep-
resentations enabled Graph Convolutional Networks (GCNs) to extract deeper fea-
tures, leading to a 99% accuracy rate, significantly outperforming traditional meth-
ods. In hand gesture recognition, we enhanced GCNs by integrating Attention Mech-
anisms and spatiotemporal features, achieving an accuracy of 99.53%.

These findings demonstrate that deep learning on graph-level representations is a
promising direction for improving AI system performance in various fields, including
network security, behavior recognition, graph data analysis, and computer vision.
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5.2 Concluding remarks
Based on the obtained results, we can conclude that integrating Deep Learning with

Graph-Level Representation Learning is an effective solution for tasks that require
leveraging relational information from graph data.

The proposed model offers three key advantages:

1. Capturing relationships between entities rather than relying solely on individ-
ual features. This enables the model to gain a deeper understanding of graph
structures, enhancing generalization ability and reducing overfitting.

2. Scalability across multiple applications, including cybersecurity, recommenda-
tion systems, social network analysis, and behavior recognition.

3. Performance optimization, achieving higher accuracy compared to traditional
methods, especially for tasks involving unstructured or highly interconnected
data.

However, despite these advantages, the model still has certain limitations that re-
quire further research to enhance its practical applicability.

5.3 Limitations of the research
Although this study has achieved promising results, several important limitations

need to be considered in future research:

Preprocessing Requirements for Graph Conversion

One of the main limitations of using deep learning on graphs is the need for a
preprocessing step to convert non-graph data into graph form. This conversion can
increase computational complexity and require higher processing resources.

For many real-world problems, initial data is often represented in tabular form, se-
quences, or images without a clear graph structure. Therefore, transformation meth-
ods such as constructing relationship networks between entities or extracting features
for graph representation must be applied.

This process can involve multiple complex steps, such as defining appropriate
nodes and edges, selecting the types of relationships between data components, and
determining edge weights if necessary. Furthermore, the construction of a reasonable
graph model significantly affects the performance of deep learning models. If the
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generated graph does not accurately reflect relationships within the data, the model
may not achieve optimal performance.

Additionally, converting non-graph data into graph form can substantially increase
computational resource requirements, especially for large-scale input data. In systems
with limited memory and processing power, this preprocessing step can become a
significant challenge. In some cases, creating and storing graphs may result in high
memory costs, slowing down overall system performance.

Although leveraging graph models offers clear advantages in capturing relation-
ships within data, the preprocessing requirement can act as a barrier to real-world
deployment. Therefore, optimizing the transformation of non-graph data into graphs
is crucial, such as employing automatic graph construction algorithms or reducing
unnecessary nodes and edges to enhance computational efficiency.

Dependence on Labeled Data

The current model primarily relies on supervised learning, which requires a large
amount of labeled data for training. However, in practice, collecting and labeling
graph data is often expensive and time-consuming.

As a result, this approach is not yet effectively applicable to large datasets with
insufficient labels, such as social networks or security monitoring systems.

Generalization Ability Across Various Graph Data Types

Although the model has demonstrated effectiveness in two specific tasks (SQL
Injection detection and hand recognition), further testing on diverse datasets is needed
to assess its generalization capability.

Some applications require processing dynamic graphs, but this study has focused
only on static graphs.

5.4 Suggestions for further research
To overcome the above limitations and expand the applications of deep learning in

graph representations, we propose several future research directions:

Developing Unsupervised Learning Methods for Graphs

• Utilize Self-Supervised Learning to learn graph representations without requir-
ing extensive labeled data.

• Incorporate Contrastive Learning to enhance feature extraction from unlabeled
graphs.
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Extending Models to Dynamic Graphs and Temporal Data

• Investigate Graph Neural Networks for dynamic graphs (Dynamic GNNs) to han-
dle evolving systems such as social networks, traffic systems, and financial data.

• Combine graph learning with temporal data (Graph-Temporal Learning) to ad-
dress time-dependent applications, such as financial fraud detection and user
behavior analysis.

Applying Graph Learning to Other Real-World Problems

• Develop recommendation systems based on global graph representations.

• Apply GNNs to malware detection by representing software programs as graphs
and classifying them accordingly.
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